
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра физики

Третьяков П.Ю., Самсонова Н.П.

ФИЗИКА (ЧАСТЬ 1)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

по дисциплине «Физика» для студентов, обучающихся по направлению 270800.62 «Строительство», 280700.62 «Техносферная безопасность», 140100.62 «Теплоэнергетика и теплотехника», 120700.62 «Землеустройство и кадастры» заочной формы обучения

УДК-53 Т-66

Третьяков, П.Ю. Методические указания и контрольные задания по курсу «Физика» студентов, обучающихся по направлению 270800.62 «Строительство», 280700.62 «Техносферная безопасность», 140100.62 «Теплоэнергетика и теплотехника», 120700.62 «Землеустройство и кадастры» заочной формы / П.Ю.Третьяков, Н.П. Самсонова. — Тюмень: РИО ФГБОУ ВПО «ТюмГАСУ», 2014. — 43 с.

Методические указания разработаны на основании рабочих программ ФГБОУ ВПО «ТюмГАСУ» дисциплины «Физика» для студентов, обучающихся по направлению 270800.62 «Строительство», 280700.62 «Техносферная безопасность», 140100.62 «Теплоэнергетика и теплотехника», 120700.62 «Землеустройство и кадастры» заочной формы обучения.

Методические указания содержат контрольные задания, сводку необходимых формул, общие требования к решению и оформлению задач (контрольных работ).

Рецензент: Величко Т.И.

Тираж 100 экз.

Редакционно-издательский отдел ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет»

[©] ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет»

[©] Третьяков П.Ю., Самсонова Н.П.

СОДЕРЖАНИЕ

1 Цель и задачи освоения дисциплины	4
2 Требования к результатам освоения дисциплины	4
3 Общие методические указания к выполнению контрольных работ	5
4 Физические основы механики	6
4.1 Основные формулы	6
4.2 Задачи по разделу «Физические основы механики»	10
5 Молекулярная физика	16
5.1 Основные формулы	16
5.2 Задачи по разделу «Молекулярная физика»	20
6 Электростатика. Постоянный ток	25
6.1 Основные формулы	25
6.2 Задачи по разделу «Электростатика. Постоянный ток»	30
Библиографический список	37
Приложение А Табличные значения	38

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Для глубокого усвоения курса физики важно не только знание теории, но и умение активно применять изученное на практике, самостоятельно работая над решением задач. Целью освоения дисциплины является: формирование навыков грамотного решения задач, развитие логического мышления, воспитание общей математической культуры.

Задачи дисциплины научить:

- устанавливать какие закономерности лежат в основе задачи;
- находить решение задачи в буквенном виде из формул, выражающих эти закономерности;
- переводить единицы измерения величин в систему СИ;
- оценивать достоверность полученного результата.

2 ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Настоящее методическое указание нацелено на приобретение студентами следующих компетенций:

- ПК-1 использование основных законов естественнонаучных дисциплин в профессиональной деятельности, применение методов математического анализа и моделирования, теоретического и экспериментального исследования;
- ПК-2 способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат;
- ПК-5 владение основными методами, способами и средствами получения, хранения, переработки информации, навыки работы с компьютером как средством управления информацией.

В результате освоения дисциплины студент должен:

Иметь представление: об основных физических понятиях, законах и теориях, об общих особенностях квантовой механики и классической физики.

Знать: основные понятия, законы и модели механики, электричества, молекулярной физики и термодинамики.

Уметь решать типовые задачи по основным разделам физики, используя методы математического анализа, использовать физические законы при анализе и решении проблем.

3 ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ

К выполнению контрольных работ по каждому разделу физики студент заочного обучения приступает только после изучения материала, соответствующего данному разделу программы. При выполнении контрольных работ студенту необходимо руководствоваться следующим:

- 1. Контрольные работы выполняются чернилами в обычной школьной тетради, на обложке указывается название дисциплины, номер работы, фамилия и инициалы студента, учебный шифр, направление обучения, профиль (специальность).
- 2. Условия задач в контрольной работе переписываются полностью без сокращений. Для замечаний преподавателя на страницах тетради оставляются поля.
- 3. В конце контрольной работы указывается, каким учебником или учебным пособием студент пользовался при изучении физики (название учебника, автор, год издания). Это делается для того, чтобы рецензент в случае необходимости мог указать, что следует студенту изучить для завершения контрольной работы.
- 4. Если контрольная работа при рецензировании не зачтена, студент обязан представить ее на повторную рецензию, включив в нее те задачи, решения которых оказались неверными. Повторная работа представляется вместе с не зачтенной работой.
- 5. В контрольной работе студент должен решить задачи того варианта, номер которого совпадает с последней цифрой его шифра. Номера задач, которые студент должен включить в свою контрольную работу, определяются по таблицам вариантов (http://www.tgasu.ru/node/990 или на кафедре физики а.815).
- 6. Зачтенные контрольные работы предъявляются экзаменатору. Студент должен быть готов во время экзамена дать пояснения по существу решения задач, входящих в контрольные работы.

4 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

4.1 Основные формулы

• Кинематическое уравнение движения материальной точки (центра масс твердого тела) вдоль оси X:

$$X=f(t)$$
,

где f(t)-некоторая функция времени.

• Средняя путевая скорость:

$$\langle v \rangle = \frac{\Delta S}{\Delta t}$$

где ΔS - путь, м;

 Δt – время, с.

• Мгновенная скорость:

$$v = \frac{dS}{dt}$$

• Проекция скорости на ось X:

$$v_x = \frac{dx}{dt}$$

• Проекция ускорения на ось X:

$$a_{x} = \frac{dv_{x}}{dt}$$

• Нормальное ускорение:

$$a_n = \frac{v^2}{R}$$

где v – скорость движения, м/с;

R – радиус кривизны траектории, м.

• Тангенциальное ускорение:

$$a_{\tau} = \frac{dv}{dt}$$

• Кинематическое уравнение движения материальной точки по окружности:

$$\varphi = f(t), \quad r = R = const$$

• Угловая скорость:

$$\omega = \frac{d\varphi}{dt}$$

• Угловое ускорение:

$$\varepsilon = \frac{d\omega}{dt}$$

• Связь между линейными и угловыми величинами, характеризующими движение точки по окружности:

6

$$v = \omega R$$
, $a_{\tau} = \varepsilon R$, $a_n = \omega^2 R$

где *v*-линейная скорость, м/с;

 a_{τ} и a_n - тангенциальное и нормальное ускорения, м/с²;

ω - угловая скорость, рад/с;

 ε - угловое ускорение, рад/ c^2 ;

R - радиус окружности, м.

• Полное ускорение:

$$a = \sqrt{a_n^2 + a_\tau^2}$$
 или $a = R\sqrt{\varepsilon^2 + \omega^4}$

• Угол между полным a и нормальным a_n ускорениями:

$$\alpha = \arccos\left(\frac{a_n}{a}\right)$$

• Импульс материальной точки массой m, движущейся со скоростью v:

$$\vec{p} = m\vec{v}$$

• Второй закон Ньютона:

$$\vec{F} = m\vec{a}$$

где *F*-сила, действующая на тело, Н.

- Силы, рассматриваемые в механике:
 - а) сила упругости

$$F = k\Delta l$$

где k - коэффициент упругости (в случае пружины – жесткость), H/м;

х - абсолютная деформация, м.

б) сила тяжести:

$$P = mg$$

в) сила гравитационного взаимодействия:

$$F = G \frac{m_1 m_2}{r^2}$$

где G - гравитационная постоянная, $M^3/(\kappa r \cdot c^2)$;

 m_1 и m_2 –массы взаимодействующих тел, кг;

r - расстояние между телами (тела рассматриваются как материальные точки), м.

г) сила трения (скольжения):

$$F = fN$$

где f - коэффициент трения;

N - сила нормального давления, H.

• При сохранении импульса:

$$\sum_{i=1}^{n} \overrightarrow{p_i} = const$$

или для двух тел(n=2):

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{u}_1 + m_2 \vec{u}_2$$

где v_1 и v_2 — скорости тел в момент времени, принятый за начальный, м/с; u_1 и u_2 -скорости тех же тел в момент времени, принятый за конечный, м/с.

• Кинетическая энергия тела, движущегося поступательно:

$$T = \frac{mv^2}{2} = \frac{p^2}{2m}$$

где p – импульс тела, (кг·м)/с.

- Потенциальная энергия:
 - а) упругодеформированной пружины:

$$\Pi = \frac{1}{2} k\Delta l^2$$

б) гравитационного взаимодействия:

$$\Pi = -G \frac{m_1 m_2}{r}$$

где G - гравитационная постоянная;

 m_1 и m_2 -массы взаимодействующих тел;

- r расстояние между ними (тела рассматриваются как материальные точки);
 - в) тела, находящегося в однородном поле силы тяжести:

$$\Pi = mgh$$

где g- ускорение свободного падения, M/c^2 ;

- h высота тела над уровнем, принятым за нулевой (формула справедлива при условии h << R, где R- радиус Земли), м.
- При сохранении механической энергии:

$$E = T + \Pi = const$$

• Работа A, постоянной силы F, действующей под углом α к перемещению:

$$A = FS \cos \alpha$$

• Основное уравнение динамики вращательного движения относительно неподвижной оси *z*:

$$M_z = I_z \varepsilon$$

где M_z - результирующий момент внешних сил, действующих на тело, относительно оси z, H·м;

 ε - угловое ускорение, рад/ c^2 ;

 I_z - момент инерции тела относительно оси вращения, кг·м².

- Моменты инерции некоторых тел массой m относительно оси z, проходящей через центр масс:
 - а) стержня длиной l относительно оси, перпендикулярной стержню,

$$I_z = \frac{1}{12}ml$$

б) обруча (тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча (совпадающей с осью цилиндра),

$$I_z = mR^2$$

где R - радиус обруча (цилиндра), м;

в) диска радиусом R относительно оси, перпендикулярной плоскости диска,

$$I_z = \frac{1}{2}mR^2$$

• Момент импульса тела L_z , вращающегося относительно неподвижной оси z:

$$L_z = I_z \omega$$

где I_z – момент инерции тела, относительно неподвижной оси z, кг·м².

• При сохранении момента импульса системы тел, вращающихся вокруг неподвижной оси:

$$I_1\omega_1=I_2\omega_2$$

 I_1 и ω_1 , I_2 и ω_2 –моменты инерции системы тел и угловые скорости вращения в моменты времени, принятые за начальный и конечный.

• Кинетическая энергия тела, вращающегося вокруг неподвижной оси z:

$$T = \frac{1}{2}I_z\omega^2$$

• Кинематическое уравнение гармонических колебаний материальной точки:

$$x = A\cos(\omega t + \varphi)$$

где x - смещение, м;

A - амплитуда колебаний, м;

 ω - круговая или циклическая частота, c^{-1} ;

ф - начальная фаза, рад.

• Циклическая частота

$$\omega = 2\pi \nu = \frac{2\pi}{T}$$

где v – частота колебаний, Гц;

T – период, с.

• Скорость и ускорение материальной точки, совершающей гармонические колебания:

$$v = -A\omega \sin(\omega t + \varphi)$$

$$a = -A\omega^2 \cos(\omega t + \varphi)$$

- Сложение гармонических колебаний одного направления и одинаковой частоты:
 - а) амплитуда результирующего колебания

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_{2}-\varphi_1)}$$

б) начальная фаза результирующего колебания

$$\varphi = arctg \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$$

- Траектория точки, участвующей в двух взаимно перпендикулярных колебаниях:
 - а) $y = \left(\frac{A_2}{A_1}\right) x$ (если разность фаз равна нулю);

б)
$$y = -\left(\frac{A_2}{A_1}\right)x$$
 (если разность фаз равна $\pm \pi$);

в)
$$\frac{x^2}{A_1^2} + \frac{y^2}{A_1^2} = 1$$
 (если разность фаз равна $\pm \pi/2$).

• Уравнение плоской бегущей волны:

$$y = A\cos\left[\omega\left(t - \frac{x}{v}\right) + \varphi_0\right] = A\cos(\omega t - kx + \varphi_0)$$

где y - смещение точки среды с координатой x в момент t, м;

v-скорость распространения колебаний в среде, м/с.

• Связь разности фаз $\Delta \varphi$ с расстоянием Δx между точками среды, отсчитанным в направлении распространения колебаний:

$$\Delta \varphi = \left(\frac{2\pi}{\lambda}\right) \Delta x$$

где λ - длина волны, м.

4.2 Задачи по разделу «Физические основы механики»

- 101. Движение материальной точки описывается уравнениями y=1+2t, м; x=2+t, м. Найти уравнение траектории. Построить траекторию на плоскости XOY. Указать положение точки при t=0, направление и скорость движения.
- 102. Автомобиль проехал первую половину пути со скоростью v_I =10 м/с, а вторую половину пути со скоростью v_2 =15 м/с. Найти среднюю скорость на всем пути.
- 103. Координата материальной точки задается уравнением $x=7-4t+t^2$, м. Найти координату x точки в момент времени, когда скорость будет равна 0.
- 104. Две автомашины движутся по дорогам, угол между которыми α =60 0 . Скорость автомашин υ_{1} = 54 κ м/ч и υ_{2} = 72 κ м/ч. С какой скоростью υ удаляются машины одна от другой?
- 105. Зависимость пройденного телом пути S от времени t дается уравнением $S = A Bt + Ct^2$, где A = 3 m/c, B = 2 m/c^2 и C = 1 m/c^3 . Найти среднюю скорость $\langle \upsilon \rangle$ и среднее ускорение $\langle a \rangle$ тела за первую секунду движения.
- 106. Зависимость пройденного пути S от времени t дается уравнением $S = At Bt^2 + Ct^3$, где $A = 2 \, \text{м/c}$, $B = 3 \, \text{м/c}^2$ и $C = 4 \, \text{м/c}^3$. Найти: 1) зависимость скорости v и ускорения a от времени t, 2) расстояние S, пройденное телом, скорость v и ускорение a тела через a0 после начала движения.
- 107. Материальная точка движется прямолинейно с начальной скоростью $\upsilon_0 = 10~\text{м/c}$ и постоянным ускорением $a = -5~\text{m/c}^{-2}$. Определить, во сколько раз путь, пройденный материальной точкой, будет превышать модуль ее перемещения спустя t = 4~c после начала отсчета времени.
- 108. Уравнения движения двух материальных точек имеют вид $x_1 = A_1 t + B_1 t^2 + C_1 t^3$ и $x_2 = A_2 t + B_2 t^2 + C_2 t^3$, где $B_1 = 4 \text{ M/c}^2$, $C_1 = -3 \text{ M/c}^3$, $B_2 = -2 \text{ M/c}^2$, $C_2 = 1 \text{ M/c}^3$. Определить момент времени t, для которого ускорения этих точек будут равны.
- 109. Зависимость пройденного пути S от времени t дается уравнением $S = At + Bt^2 + Ct^3$, где A = 2 m/c, B = 3 m/c 2 и C = 4 m/c 3 . Найти: 1) зависимость скорости v и ускорения a от времени t, 2) расстояние S, пройденное телом, скорость v и ускорение a тела через a b после начала движения.

- 110. Радиус-вектор материальной точки изменяется со временем по закону $\vec{r} = 4t^2\vec{t} + 3t\vec{j} + 2\vec{k}$. Определить зависимость от времени скорости $\vec{v} = \vec{v}(t)$, ускорения $\vec{a} = \vec{a}(t)$, модуль скорости в момент времени t=2 c.
- 111. Точка движется по окружности радиусом R=30~cm с постоянным угловым ускорением ε . Определить тангенциальное ускорение точки a_{τ} , если известно, что за время t=4~c она совершила три оборота и в конце третьего оборота её нормальное ускорение $a_n=2$, $7~m/c^2$.
- 112. Якорь электродвигателя, имеющий частоту вращения n=50 c^{-1} после выключения тока, сделав N=628 оборотов, остановился. Определить угловое ускорение ε якоря.
- 113. Колесо вращается с постоянным угловым ускорением $\varepsilon = 3 \ pa\partial/c^2$. Определить радиус колеса R, если через $t=1 \ c$ после начала движения полное ускорение колеса $a=7.8 \ m/c^2$.
- 114. Найти радиус вращающегося колеса R, если известно, что линейная скорость υ_1 точки, лежащей на ободе, в 2,5 раза больше линейной скорости υ_2 точки, лежащей на 5~cm ближе к оси колеса.
- 115. Диск радиусом R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота диска от времени задается уравнением $\varphi = A + Bt + Ct^2 + Dt^3$ (B=1 pad/c, C=1 pad/c², D=1 pad/c³). Определить для точек на ободе диска к концу второй секунды после начала движения тангенциальное ускорение a_p , нормальное ускорение a_n , полное ускорение a_n .
- 116. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=100 м. Закон движения автомобиля выражается уравнением $S=100+10t-0.5t^2$. Найти скорость автомобиля υ , его тангенциальное a_{τ} и полное ускорения a в конце пятой секунды.
- 117. Материальная точка движется по окружности, радиус которой R=20 м. Зависимость пути, пройденного точкой от времени выражается уравнением $S=t^3+4t^2-t+8$. Определить пройденный путь S, угловую скорость ω и угловое ускорение точки ε через t=3 c от начала движения.
- 118. Материальная точка движется по окружности радиуса R=1 M согласно уравнению $S=8-0.2t^3$. Найти скорость υ , тангенциальное a_τ , нормальное a_n и полное ускорения a в момент времени t=3 c.
- 119. Тело вращается равноускоренно с начальной угловой скоростью $\omega=5$ pad/c и угловым ускорением $\varepsilon=1$ pad/c. Сколько оборотов N сделает тело за t=10 c?
- 121. Под действием какой силы F при прямолинейном движении тела изменение его координаты со временем происходит по закону $x = 10 + 5t 10t^2$, м? Масса тела $m = 2 \ \kappa z$.
 - 122. Найти закон движения x=x(t) тела массой m=1 κz под действием

- постоянной силы F=10~H, если в момент t=0 тело покоилось в начале координат (x=0).
- 123. Найти закон движения x=x(t) тела массой m=1 кг под действием постоянной силы F=2 H, если в момент t=0 имеем $x_0=1$ M и $v_0=2$ M/c.
- 124. С какой силой надо действовать на тело массой m=1 κc , чтобы за t=1 c увеличить его скорость в два раза при начальной скорости а) $v_0=1$ m/c; б) $v_0=100$ m/c?
- 125. В неподвижном лифте на пружине висит гиря массой m=1 κz . Пружина растянулась на $\Delta l_1 = 2$ cm. Найти, на сколько растянется пружина Δl_2 , если а) лифт поднимается с ускорением a=2 m/c^2 , б) опускается с тем же ускорением.
- 126. На тело массой m=2 кг действуют две силы: $F_1=3H$ u $F_2=4H$. Найти ускорение тела a, если: а) силы действуют в одну сторону, б) в противоположные стороны, в) под углом 90° друг к другу.
- 127. Стальная проволока некоторого диаметра выдерживает силу натяжения F=4,4 κH . С каким наибольшим ускорением a можно поднимать груз массой m=400 $\kappa \varepsilon$, подвешенный на этой проволоке, чтобы она не разорвалась.
- 128. Автомобиль массой m=1020 кг, двигаясь равнозамедленно, останавливается через t=5 с, пройдя путь S=25 м. Найти начальную скорость автомобиля υ_0 и силу торможения F.
- 129. Струя воды сечением $S=6\ cm^2$ ударяется о стенку под углом $a=60^\circ$ к нормали и упруго отскакивает от нее без потери скорости. Найти силу, действующую на стенку F, если известно, что скорость течения воды в струе $v=12\ m/c$.
- 130. На автомобиль массой m=1 T во время движения действует сила трения F_{mp} , равная 10% действующей на него силы тяжести mg. Какова должна быть сила тяги, развиваемая мотором автомобиля, чтобы автомобиль двигался с ускорением a=2 m/c^2 ?
- 131. Конькобежец массой m_1 =60 κz , стоя на коньках на льду бросает камень массой m_2 =2 κz под углом 60^0 к горизонту со скоростью v_2 =10 m/c. На какое расстояние откатится при этом конькобежец, если коэффициент трения коньков о лед f=0,02?
- 132. Летчик массой $m=70~\kappa 2$ описывает в самолете, летящем со скоростью $\upsilon=360~\kappa m/4$, вертикальную петлю Нестерова радиусом R=400~m. Определить силу F, прижимающую летчика к сиденью в верхней и нижней точках этой петли.
- 133. Тело скользит по наклонной плоскости, составляющей с горизонтом угол $a=45^{\circ}$. Зависимость пройденного телом пути S от времени t дается уравнением $S=Ct^2$, где C=1,73 m/c^2 . Найти коэффициент трения тела f о плоскость.
- 134. С покоящимся шаром массой m=2 кг сталкивается такой же шар, движущийся со скоростью v=1 м/с. Вычислить работу A, совершаемую

- вследствие деформации при прямом центральном неупругом ударе.
- 135. Масса снаряда m_1 =10 кг, масса ствола орудия m_2 =500 кг. При выстреле снаряд получает кинетическую энергию T_1 =2,5·10⁶ Дж. Какую кинетическую энергию T_2 получит ствол орудия вследствие отдачи?
- 136. Стальной шарик массой $m=50\ \varepsilon$ упал с высоты $h_I=1\ м$ на большую плиту, передав ей импульс силы, равной $Ft=0,20\ H\cdot c$. Определить количество теплоты Q, выделившегося при ударе, и высоту h_2 , на которую поднимется шарик.
- 137. По небольшому куску мягкого железа, лежащему на наковальне массой m_1 =300 кг, ударяет молот массой m_2 =8 кг. Определить КПД η удара, если удар неупругий. Полезной считать энергию, затраченную на деформацию куска железа.
- 138. На вагонетку массой m_1 =50 кг, катящуюся по горизонтальному пути со скоростью v_1 =0,2 m/c, насыпали сверху m_2 =200 кг щебня. На сколько при этом уменьшилась скорость вагонетки v_2 ?
- 139. Два тела движутся по взаимно перпендикулярным пересекающимся прямым. Модуль импульса первого тела p_1 =4 ($\kappa c \cdot m$)/c, а второго тела p_2 =3 ($\kappa c \cdot m$)/c. Чему равен модуль импульса p системы этих тел после их абсолютно неупругого удара?
- 140. Лебедка поднимает с постоянным ускорением груз массой m=200 кг на высоту h=20 м за t=30 с. Какова мощность N двигателя лебедки?
- 141. Два шарика, массы которых соответственно m_1 =200 г и m_2 =600 г, висят, соприкасаясь, на одинаковых вертикальных нитях длиной l=80 см. Первый шар отклонили на угол α =90 и отпустили. На какую высоту h поднимутся шарики после удара, если этот удар абсолютно неупругий?
- 142. От удара копра массой m_1 =1450 κ 2, падающего свободно с высоты h_1 =5 m, свая массой m_2 =150 κ 2 погружается в грунт на h_2 =10 cm. Определить силу сопротивления грунта F, считая ее постоянной, а удар абсолютно неупругим. Изменением потенциальной энергии сваи пренебречь.
- 143. В воде с глубины h=5 м поднимают до поверхности камень объемом V=0,6 M^3 . Плотность камня $\rho=2500$ $\kappa c/M^3$. Найти работу A по подъему камня.
- 144. Пуля массой m=15 г, летящая горизонтально, попадает в баллистический маятник длиной l=1 м и массой M=1,5 кг и застревает в нем. Маятник в результате этого отклонился на угол $\varphi=30^{0}$. Определить скорость пули.
- 145. Стальная проволока некоторого радиуса выдерживает напряжение до $2,94~\kappa H$. На такой проволоке подвешен груз массой $m=10~\kappa z$. На какой наибольший угол α можно отклонить проволоку, чтобы она не разорвалась при прохождении грузом положения равновесия?
- 146. Во сколько раз кинетическая энергия спутника Земли, движущегося по круговой траектории T, меньше его гравитационной потенциальной энергии Π ?
- 147. Определите работу A, которую необходимо совершить, чтобы тело массой $m=100~\kappa z$, находящееся на Земле, смогло превратиться в спутник

Солнца?

- 148. Найти работу A, которую надо совершить, чтобы сжать пружину на $\Delta l = 20~c$ м, если известно, что сила F пропорциональна сжатию Δl и жесткость пружины $k=3~\kappa H/$ м.
- 149. Налетев на пружинный буфер, вагон массой m=16 т, двигавшийся со скоростью $\upsilon=0,6$ м/c, остановился, сжав пружины на $\Delta l=8$ см. Найти общую жесткость пружин k буфера.
- 150. Определить работу A растяжения двух соединенных последовательно пружин с жесткостями k_1 =400 H/м и k_2 =250 H/м, если первая пружина при этом растянулась на Δl_1 =2 cм.
- 151. Сплошной цилиндр массой m=0,1 кг катится без скольжения с постоянной скоростью v=4 m/c. Определить кинетическую энергию цилиндра T и время t до его остановки, если на него действует сила трения $F_{mp}=0,1$ H.
- 152. Сплошной шар скатывается по наклонной плоскости, длина которой l=1 м и угол наклона $\alpha=30^{\circ}$. Определить скорость шара v в конце наклонной плоскости. Трение шара о плоскость не учитывать.
- 153. Полый цилиндр массой m=1 κz катится по горизонтальной поверхности со скоростью v=10 m/c. Определить силу F, которую необходимо приложить к цилиндру, чтобы остановить его на пути S=2 m.
- 154. Маховик, имеющий форму диска массой $m=10~\kappa z$ и радиусом R=0,1 m, был раскручен до частоты $n=120~muh^{-1}$. Под действием силы трения диск остановился через t=10~c. Найти момент силы трения M_{mp} , считая ее постоянной.
- 155. Обруч и диск скатываются с наклонной плоскости, составляющей угол α =30° с горизонтом. Чему равны их ускорения a в конце спуска? Силой трения пренебречь.
- 156. Горизонтальная платформа массой m=25 $\kappa 2$ и радиусом R=0.8 м вращается с частотой $n_I=18$ мин⁻¹. В центре стоит человек и держит в расставленных руках гири. Считая платформу диском определить частоту вращения платформы, если человек, отпустив руки, уменьшит свой момент инерции от $J_I=3.5$ $\kappa 2\cdot m^2$ до $J_2=1$ $\kappa 2\cdot m^2$.
- 157. Кинетическая энергия вала T, вращающегося с частотой n=5 o6/c равна 60 Дж. Найти момент импульса вала L.
- 158. По ободу шкива, насажанного на общую ось с маховым колесом, намотана нить, к концу которой подвешен груз массой m=1 κz . На какое расстояние h должен отпуститься груз, чтобы колесо со шкивом получило частоту вращения n=60 об/мин? Момент инерции колеса со шкивом J=0,42 $\kappa z \cdot m^2$, радиус шкива R=10 см.
- 159. Маховик вращается с частотой n=10 oб/c. Его кинетическая энергия T=7.85 $\kappa \not \square ж$. За какое время t момент сил M=50 $H\cdot M$, приложенный к маховику, увеличит угловую скорость маховика вдвое?
- 160. Две гири с массами $m_1=2$ кг и $m_2=1$ кг соединены нитью, перекинутой через блок массой m=1 кг. Найти ускорение a, с которым движутся гири и силы натяжения T_1 и T_2 нитей, к которым подвешены

- гири. Блок считать однородным диском. Трением пренебречь.
- 161. Гармонические колебания величины X описываются уравнением $X=0,02\cos(6\pi t+\pi/3)$, см. Определить амплитуду колебаний A, циклическую частоту ω , линейную частоту колебаний v, период колебаний T.
- 162. Материальная точка совершает гармонические колебания с амплитудой $A=4\ cm$ и периодом $T=2\ c$. Написать уравнение движение точки, если её движение начинается из положения $x_0=2\ cm$.
- 163. Точка совершает гармонические колебания с амплитудой A=10~cm и периодом T=5~c. Определить для точки максимальную скорость v_{max} и максимальное ускорение a_{max} .
- 164. Тело массой m=10 г совершает гармоническое колебание по закону $x=0,1\cos(4\pi t+\pi/3)$, м. Определить максимальные значения возвращающей силы F и кинетической энергии T.
- 165. Амплитуда затухающих колебаний маятника за t=2 мин уменьшилась в два раза. Определить коэффициент затухания δ .
- 166. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых $x=A_1Sin\omega_1t$ и $y=A_2Cos\omega_2t$, где $A_1=8$ см, $A_2=4$ см, $\omega_1=\omega_2=2$ рад/с. Написать уравнение траектории и построить ее. Показать направление движения точки.
- 167. Определить период T простых гармонических колебаний диска радиусом R=40 cm около горизонтальной оси, проходящей через образующую диска.
- 168. К пружине подвешен груз массой m=10 кг. Зная, что пружина под влиянием силы F=9.8 H растягивается на $\Delta l=1.5$ cм, найти период T вертикальных колебаний груза.
- 169. Если увеличить массу груза, подвешенного к спиральной пружине, на $600\ \emph{c}$, то период колебаний груза возрастает в 2 раза. Определить массу первоначально подвешенного груза \emph{m} .
- 170. Две точки лежат на луче и находятся от источника колебаний на расстоянии x_1 =4 м и x_2 =7 м. Период колебаний T=20 мс и скорость распространения волны v=300 м/с. Определить разность фаз $\Delta \varphi$ колебаний этих точек.
- 171. Вода течет в горизонтально расположенной трубе переменного сечения. Скорость течения в широкой части трубы $\upsilon_1 = 20$ см/с. Определить скорость υ_2 течения воды в узкой части трубы, диаметр d_2 которой в l,5 раза меньше диаметра d_1 широкой части.
- 172. К поршню цилиндра, расположенного горизонтально, приложена сила F=15~H. Определить скорость v истечения воды из наконечника спринцовки, если площадь поршня $S=12~cm^2$.
- 173. Давление ветра на стену $p=200~\Pi a$. Ветер дует перпендикулярно к стене. Определить скорость υ ветра. Плотность воздуха $\rho=1,29~\kappa c/m^3$.
- 174. Струя воды диаметра d=2 см, движущаяся со скоростью $\upsilon=10$ м/с, ударяется о неподвижную плоскость, поставленную перпендикулярно к струе.

Найти силу F давления струи на плоскость, считая, что после удара о плоскость скорость частиц воды равна нулю.

- 175. У нижнего отверстия вертикальной трубы с уменьшающимся вверх сечением скорость потока воды $\upsilon_1 = 1$ $\emph{m/c}$ и давление в потоке $p_1 = 2$ \emph{amm} , а у верхнего отверстия скорость потока $\upsilon_2 = 2$ $\emph{m/c}$ и $p_2 = 0,5$ \emph{amm} . Какова высота трубы \emph{h} ?
- 176. Найти скорость υ течения углекислого газа по трубке, если известно, что за время t=30 мин через поперечное сечение протекает масса газа m=0.51 кг. Плотность газа $\rho=7.5$ кг/м³. Диаметр трубы d=2 см.
- 177. Какое давление p создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/c? Плотность краски $\rho = 0.8 \cdot 10^3 \text{ кг/м}^3$.
- 178. Пренебрегая вязкостью жидкости, определить скорость истечения жидкости из малого отверстия в стене сосуда, если высота h уровня жидкости над отверстием составляет 1,5 m.
- 179. Определить на какую высоту h поднимается вода в вертикальной трубе диаметром d=3 cm, впаянной в горизонтальную трубу диаметром $d_1=9$ cm. Скорость газа $v_1=25$ cm/c.
- 180. В сосуд заливается вода со скоростью V_t =0,5 π /c. Пренебрегая вязкостью воды, определить диаметр отверстия d в сосуде, при котором вода поддерживалась бы в нем на постоянном уровне h=20 cm.

5 МОЛЕКУЛЯРНАЯ ФИЗИКА

5.1 Основные формулы

• Количество вещества однородного газа (в молях)

$$\nu = \frac{N}{N_A} = \frac{m}{M}$$

где N - число молекул газа;

 N_A - постоянная Авогадро, моль⁻¹;

m - масса газа, кг;

M - молярная масса, кг/моль.

Если система представляет смесь нескольких газов, то количество вещества системы

$$v = v_1 + v_2 + \dots + v_n = \frac{N_1}{N_a} + \frac{N_2}{N_a} + \dots + \frac{N_n}{N_a}$$

Или

$$\nu = \frac{m_1}{M_1} + \frac{m_2}{M_2} + \dots + \frac{m_n}{M_n}$$

• Уравнение Менделеева - Клапейрона (уравнение состояния идеального газа):

$$pV = \frac{m}{M}RT = \nu RT$$

где *m* - масса газа;

M - молярная масса газа, кг/моль;

R - молярная газовая постоянная, Дж/(моль·К);

v – количество вещества, моль;

T - термодинамическая температура, К.

- Опытные газовые законы, являющиеся частными случаями уравнения Менделеева Клапейрона для изопроцессов:
 - а) закон Бойля-Мариотта (изотермический процесс T=const, m=const):

$$pV = const$$

или для двух состояний газа:

$$p_1V_1 = p_2V_2$$

б) закон Гей-Люссака (изобарный процесс - p=const, m=const):

$$\frac{V}{T} = const$$

или для двух состояний:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

в) Закон Шарля (изохорный процесс - V=const, m=const):

$$\frac{p}{T} = const$$

или для двух состояний:

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

 Γ) объединенный газовый закон (m = const):

$$\frac{pV}{T}=const$$
 или $\frac{p_1V_1}{T_1}=\frac{p_2V_2}{T_2}$

где p_1 , V_1 , T_1 -давление, объем и температура газа в начальном состоянии; p_2 , V_2 , T_2 - те же величины в конечном состоянии.

• Закон Дальтона, определяющий давление смеси газов:

$$p = p_1 + p_2 + \dots + p_n$$

где p_i - парциальные давления компонентов смеси, Па;

п - число компонентов смеси.

Парциальным давлением называется давление газа, которое производил бы этот газ, если бы только он один находился в сосуде, занятом смесью.

• Молярная масса смеси газов:

$$M = \frac{(m_1 + m_2 + \dots + m_n)}{(\nu_1 + \nu_2 + \dots + \nu_n)}$$

где m_i -масса i-го компонента смеси;

 $v_i = \frac{m_i}{M_i}$ - количество вещества i-го компонента смеси;

п-число компонентов смеси.

• Массовая доля ω_i *i*-го компонента смеси газа (в долях единицы или процентах):

$$\omega_i = \frac{m_i}{m}$$

где *т* - масса смеси.

• Концентрация молекул:

$$n = \frac{N}{V} = \frac{N_A \rho}{M}$$

где N - число молекул, содержащихся в данной системе;

 ρ – плотность вещества, кг/м³;

V - объем системы, M^3 .

Формула справедлива не только для газов, но и для любого агрегатного состояния вещества.

• Основное уравнение кинетической теории газов:

$$p = \frac{2}{3}n < E_{\Pi} >$$

где $<\!E_n\!>$ - средняя кинетическая энергия поступательного движения молекулы, Дж.

• Средняя кинетическая энергия поступательного движения молекулы:

$$\langle E_{\Pi} \rangle = \frac{3}{2}kT$$

где k - постоянная Больцмана, Дж/К.

• Средняя полная кинетическая энергия молекулы:

$$\langle E \rangle = \frac{i}{2}kT$$

где і-число степеней свободы молекулы.

• Зависимость давления газа от концентрации молекул и температуры:

$$p = nkT$$

• Скорости молекул:

$$< v_{_{\mathrm{KB}}}> = \sqrt{\frac{3kT}{m_1}} = \sqrt{\frac{3RT}{M}}$$
 (средняя квадратичная)

$$< v> = \sqrt{\frac{8kT}{\pi m_1}} = \sqrt{\frac{8RT}{\pi M}}$$
 (средняя арифметическая)

$$v_{\scriptscriptstyle
m B} = \sqrt{rac{2kT}{m_1}} = \sqrt{rac{2RT}{M}}$$
 (наиболее вероятная)

где m_I -масса одной молекулы;

M — молярная масса молекулы.

• Относительная скорость молекулы:

$$u = \frac{v}{v_{\rm B}}$$

где v - скорость данной молекулы, м/с.

• Удельные теплоемкости газа при постоянном объеме (c_V) и при постоянном давлении (c_p) :

$$c_V = \frac{i}{2} \frac{R}{M}; \qquad c_p = \frac{i+2}{2} \frac{R}{M}$$

• Связь между удельной с и молярной С теплоемкостями:

$$c = \frac{C}{M}$$
; $C = cM$

• Уравнение Майера:

$$C_p - C_V = R$$

• Внутренняя энергия идеального газа:

$$U = \frac{m}{M} \frac{i}{2} RT$$

• Первое начало термодинамики:

$$Q = \Delta U + A$$

где Q-теплота, сообщенная системе (газу), Дж;

 ΔU -изменение внутренней энергии системы, Дж;

А- работа, совершенная системой против внешних сил, Дж.

• Работа расширения газа:

$$A = \int_{V_1}^{V_2} p dV$$
 (в общем случае); $A = p(V_2 - V_1)$ (при изобарном процессе) $A = \frac{m}{M}RT \ln \frac{V_2}{V_1}$ (при изотермическом процессе) $A = -\Delta U = -\frac{m}{M}C_V\Delta T$ или $A = \frac{RT_1}{\gamma - 1}\frac{m}{M}\left[1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1}\right]$ (при адиабатном процессе)

$$\gamma = \frac{c_p}{c_V}$$
 – показатель адиабаты

• Уравнения Пуассона, связывающие параметры идеального газа при адиабатном процессе:

$$pV^{\gamma} = const, \quad \frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma - 1}, \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{\gamma}, \quad \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}}.$$

• Термический к. п. д. цикла:

$$\eta = \frac{Q_1 - Q_2}{Q_1}$$

где Q_I - теплота, полученная рабочим телом от теплоотдатчика, Дж;

 Q_2 -теплота, переданная рабочим телом теплоприемнику, Дж.

• Термический к. п. д. цикла Карно:

$$\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}$$

где T_{I} и T_{2} – термодинамические температуры теплоотдатчика и теплоприемника, К.

• Коэффициент поверхностного натяжения:

$$\alpha = \frac{F}{l}$$
 или $\alpha = \frac{\Delta E}{\Delta S}$

где F — сила поверхностного натяжения, действующая на контур l, ограничивающий поверхность жидкости;

 ΔE — изменение свободной энергии поверхностной пленки жидкости, связанное с изменением площади ΔS поверхности этой пленки.

• Формула Лапласа, выражающая давление p, создаваемое сферической поверхностью жидкости:

$$p = \frac{2\alpha}{R}$$

где R - радиус сферической поверхности, м.

• Высота подъема жидкости в капиллярной трубке:

$$h = \frac{2\alpha \cos \theta}{\rho gR}$$

где θ – краевой угол (θ = θ при полном смачивании стенок трубки жидкостью; θ = π при полном несмачивании);

R- радиус канала трубки, м;

 ρ -плотность жидкости;

g-ускорение свободного падения.

• Высота подъема жидкости между двумя близкими и параллельными друг другу плоскостями:

$$h = \frac{2\alpha \cos \theta}{\rho g d}$$

где d - расстояние между плоскостями, м

5.2. Задачи по разделу «Молекулярная физика»

- 201. Определить массу молекулы m_0 аммиака NH_3 .
- 202. Сколько молекул N содержится в m=2 ε кислорода?
- 203. Определить количество вещества v и число N молекул водорода массой m=0,2 κz .
- 204. Вода при температуре t=4 0C занимает объем V=0,3 cM . Определить число N молекул воды.
 - 205. Определить массу десяти молекул газа СО.
- 206. Определить концентрацию n молекул кислорода, при нормальных условиях.
- 207. Определить количество вещества v азота, заполняющего сосуд объемом V=2 π , если концентрация молекул газа в сосуде $n=2\cdot 10^{1.8} \text{ м}^{-3}$.
- 208. Определить объём баллона, содержащего кислород массой $m=10\ \varepsilon$. Концентрация молекул газа $n=6.3\cdot 10^{24} M^{-3}$.
 - 209. Определить массу двух молекул газа CO_2 .
 - 210. Определить массу m киломоля и массу одной молекулы m_0 окиси

азота (NO).

- 211. Определить давление смеси p, состоящей из водорода массой m_1 =10 z и гелия массой m_2 =20 z при температуре t=-7 0C . Смесь газов находится в баллоне объемом V=50 π .
- 212. Для сварки израсходован кислород массой m=3,2 кг. Каков должен быть минимальный объем сосуда (в литрах) с кислородом, если стенки сосуда рассчитаны на давление p=15,2 МПа. Температура газа в сосуде t=17 ^{0}C .
- 213. Определить температуру водорода T, имеющего плотность $\rho=6$ $\kappa e/M^3$ при давлении p=12,1 $M\Pi a$?
- 214. Средняя кинетическая энергия поступательного движения молекул газа равна $15\cdot 10^{-21}~$ Дж. Концентрация молекул равна $9\cdot 10^{19}~$ см $^{-3}$. Определить давление газа.
- 215. В баллоне емкостью 50 л находится сжатый водород при температуре 27 °C. После того как часть воздуха выпустили, давление понизилось на $1\cdot 10^{-5} \Pi a$. Определить массу выпущенного водорода. Процесс считать изотермическим.
- 216. В сосуде, имеющем форму шара, радиус которого 0.1~m находиться 56~c азота. До какой температуры можно нагреть сосуд, если его стенки выдерживают давление $5\cdot10^5~\Pi a$?
- 217. При температуре 300~K и давлении $1,2\cdot10^5~\Pi a$ плотность смеси водорода и азота $1~\kappa z/m^3$. Определить молярную массу смеси.
- 218. В баллоне емкостью 0.8 м^3 находится 2 кг водорода и 2.9 кг азота. Определить давление смеси, если температура окружающей среды $27 \, ^0 C$.
- 219. Во сколько раз плотность воздуха ρ_I , заполняющего помещение зимой $(t_I=7~^{\circ}C)$, больше его плотности ρ_2 летом $(t_2=37~^{\circ}C)$. Давление газа считать постоянным.
- 220. При температуре 27 °C и давлении $10^6~\Pi a$ плотность смеси кислорода и азота $15~\varepsilon/\partial m^3$. Определить молярную массу смеси.
- 221. Найти среднею кинетическую энергию вращательного движения всех молекул, содержащихся в $0.2\ \emph{c}$ водорода при температуре $27\ ^{\circ}C$.
- 222. Давление идеального газа 10~ MПа, концентрация молекул $8\cdot 10^{10}~cm^{-3}$. Определить среднею кинетическую энергию поступательного движения одной молекулы и температуру газа.
- 223. Определить среднее значение полной кинетической энергии одной молекулы аргона и водяного пара при температуре 500 К.
- 224. Определить внутреннюю энергию U водорода, а также среднюю кинетическую энергию $<\varepsilon>$ молекулы этого газа при температуре T=300~K, если количество вещества v этого газа равно 0,5~моль.
- 225. Определить суммарную кинетическую энергию E_n поступательного движения всех молекул газа, находящегося в сосуде вместимостью V=3 л под давлением 540 к Πa .
- 226. Молярная внутренняя энергия U некоторого двухатомного газа равна $6.02~\kappa \not\square$ ж/моль. Определить среднюю кинетическую энергию $<\varepsilon_{\it вp}>$ вращательного движения одной молекулы этого газа. Газ считать идеальным.

- 227. Определить среднюю квадратичную скорость $\langle v_{\kappa 6} \rangle$ молекулы газа, заключенного в сосуд вместимостью 2π под давлением $p=200 \ \kappa \Pi a$. Масса газа $m=0,3 \ z$.
- 228. Определить изменение внутренней энергии водяного пара ΔU массой $m=100\ z$ при повышении его температуры на $\Delta T=20\ K$ при постоянном объеме.
- 229. Определить внутреннюю энергию водяного пара массой $m=180\ \varepsilon$, принимая его за идеальный газ при температуре $27\ ^0C$, а также кинетическую энергию вращательного движения при той же температуре.
- 230. Определить среднюю арифметическую скорость $<\upsilon>$ молекул газа, если известно, что их средняя квадратичная скорость $<\upsilon_{\kappa g}>=1$ $\kappa m/c$.
- 231. Определить молярную массу μ двухатомного газа и его удельные теплоемкости, если известно, что разность c_P - c_V удельных теплоемкостей этого газа равна 260 Дж/(кг·К).
- 232. Найти удельные теплоемкости и молярные теплоемкости углекислого газа.
- 233. Определить показатель адиабаты γ идеального газа, который при температуре T=350 K и давлении p=0,4 $M\Pi a$ занимает объем V=300 π и имеет теплоемкость C_V =857 \mathcal{L} \mathcal{H} \mathcal{H}
- 234. В сосуде вместимостью V=6 л находится при нормальных условиях двухатомный газ. Определить молярную теплоемкость C_V этого газа при постоянном объеме.
- 235. Определить молярные теплоемкости газа, если его удельные теплоемкости $c_V=10.4~\kappa \square \varkappa /(\kappa z\cdot K)$ и $c_P=14.6~\kappa \square \varkappa /(\kappa z\cdot K)$.
- 236. Найти удельные c_V и c_P и молярные C_V и C_P теплоемкости азота и гелия.
- 237. Вычислить удельные теплоемкости газа, зная, что его молярная масса μ = $4\cdot10^{-3}$ кг/моль и отношение теплоемкостей $\frac{c_P}{c_V}$ =1,67.
- 238. Трехатомный газ под давлением $p=240\ \kappa\Pi a$ и температуре $t=20\ ^{0}C$ занимает объем $V=10\ \pi$. Определить молярную теплоемкость C_{p} этого газа при постоянном давлении.
- 239. Определить во сколько раз показатель адиабаты для гелия больше, чем для углекислого газа.
- 240. Одноатомный газ при нормальных условиях занимает объем V=5 л. Вычислить теплоемкость этого газа при постоянном объеме.
- 241. Определить коэффициент диффузии D гелия при давлении $1\cdot 10^6$ Πa и температуре $27\ ^0C$.
- 242. Коэффициент внутреннего трения кислорода при нормальных условиях $1.9 \cdot 10^{-4}$ кг/(м·с). Определить коэффициент теплопроводности кислорода.
- 243. Коэффициент диффузии водорода при нормальных условиях $9.1\cdot10^{-5}$ m^2/c . Определить коэффициент теплопроводности водорода.

- 244. Найти коэффициент внутреннего трения η азота при нормальных условиях, если коэффициент диффузии для него при этих условиях $D=1.42\cdot 10^{-5} \, \text{M}^2/c$.
- 245. Какое количество теплоты теряется в течении часа через окно за счет теплопроводности воздуха, заключенного между рамами, если температура в помещении $20~^{\circ}C$, а снаружи $-20~^{\circ}C$? Площадь рамы $2~^{\prime}M^2$, расстояние между рамами $0.3~^{\prime}M$. Диаметр молекул воздуха принять равным $0.3~^{\prime}MM$, температуру воздуха между рамами считать равной средне арифметическому температуры наружного и внутреннего воздуха.
- 246. Найти коэффициент диффузии D водорода при нормальных условиях, если средняя длина свободного пробега $\lambda = 0.6$ мкм.
- 247. Найти массу m азота, прошедшего вследствие диффузии через площадку $S=0,01~\text{M}^2$ за время t=10~c, если градиент плотности в направлении, перпендикулярном площадке, $\Delta\rho/\Delta x = 1,26~\kappa c/\text{M}^4$. Температура азота $t=27~^{\circ}C$. Средняя длина свободного пробега молекул азота $\lambda = 10~\text{мкм}$.
- 248. Найти эффективный диаметр σ молекулы кислорода, если при температуре t=0 °C вязкость кислорода $\eta=18,8$ мк $\Pi a \cdot c$.
- 249. Найти теплопроводность χ водорода, вязкость которого η =8,6 мк $\Pi a \cdot c$.
 - 250. Найти теплопроводность χ воздуха при нормальных условиях.
- 251. Определить, какое количество теплоты необходимо сообщить кислороду массой $320\ \emph{e}$, чтобы нагреть его на $100\ ^{\circ}C$? а) при постоянном объёме; б) при постоянном давлении.
- 252. Во сколько раз увеличится объём 2 молей кислорода при изотермическом расширении при температуре T=300 K, если при этом газу сообщили $4 \kappa \mathcal{D} \mathcal{H}$ теплоты?
- 253. Какое количество теплоты нужно сообщить 2 молям воздуха, чтобы он совершил работу в 1000~Дж: а) при изотермическом процессе; б) изобарном процессе?
- 254. Найти работу и изменение внутренней энергии при адиабатном расширении $28\ \emph{e}$ азота, если его объём увеличился в 2 раза. Начальная температура азота $27\ ^{\circ}C$.
- 255. Определить работу, которую совершит азот, если при постоянном давлении сообщить количество теплоты $Q=21~\kappa \mu m$? Найти также изменение ΔU внутренней энергии газа.
- 256. При каком процессе выгоднее производить расширение воздуха: изобарическом или изотермическом, если объём увеличивается в 5 раз. Начальная температура газа в обоих случаях одинаковая.
- 257. Определить количество теплоты Q, которое надо сообщить кислороду объемом V=50 л. при его изохорном нагревании, чтобы давление газа повысилось на $\Delta P=0.5$ $M\Pi a$.
- 258. При изотермическом расширении азота при температуре T=280~K его объем увеличился в 2 раза. Определить: 1) совершенную при расширении

- газа работу A; 2) изменение внутренней энергии ΔU ; 3) количество теплоты Q, полученное газом. Масса азота m=0,2 кг.
- 259. Объем водорода при изотермическом расширении при температуре T=300~K увеличился в n=3 раза. Определить работу A, совершенную газом, и теплоту Q, полученную при этом. Масса m водорода равна $200~\varepsilon$.
- 260. Во сколько раз увеличится объем водорода содержащий количество вещества v=0,4 моль при изотермическом расширении, если при этом газ получит количество теплоты $Q=800~\mbox{\em \mathcal{D}}$ Температура водорода $T=300~\mbox{\em }K$.
- 261. Идеальный газ совершает цикл Карно при температурах теплоприёмника T_2 =290 K и теплоотдатчика T_1 =400K. Во сколько раз увеличится коэффициент полезного действия цикла, если температура теплоотдатчика возрастёт до T_1' = 600K?
- 262. Газ, являясь рабочим веществом в цикле Карно, получил от теплоотдатчика теплоту Q=4,38 кДж и совершил работу A=2,4 кДж. Определить температуру теплоотдатчика, если температура теплоприёмника $T_2=273~K$.
- 263. Найти изменение энтропии при нагревании $2 \kappa 2$ воды от 0 до $100 \, ^{\circ}C$ и последующем превращении её в пар при той же температуре.
- 264. Определить изменение энтропии $14\ z$ азота при изобарном нагревании его от $27\ ^{\circ}C$ до $127\ ^{\circ}C$.
- 265. Определить работу A_2 изотермического сжатия газа, совершающего цикл Карно, КПД которого η =0,4, если работа изотермического расширения равна A_1 =8 Дж.
- 266. Газ, совершающий цикл Карно, отдал теплоприемнику теплоту $Q=14\ \kappa \mbox{$\mu$}$. Определить температуру T_1 теплоотдатчика, если при температуре теплоприемника $T_2=280\ K$ работа цикла $A=6\ \kappa \mbox{$\mu$}$.
- 267. Газ, совершающий цикл Карно, получает теплоту Q=84 кДж. Определить работу A газа, если температура теплоотдатчика T_1 в 3 раза выше температуры теплоприемника T_2 .
- 268. В цикле Карно газ получил от теплоотдатчика теплоту $Q=500~\kappa Дж$ и совершил работу A=100~Дж. Температура теплоотдатчика $T_1=400~K$. Определить температуру теплоприемника T_2 .
- 269. Как изменится энтропия двух молей углекислого газа при изотермическом расширении, если объем газа увеличился в n=4 раза?
- 270. Смешано m_1 =5 κ 2 воды при температуре T_1 =280 K с m_2 =8 κ 2 воды при температуре T_2 =350 K. Найти температуру смеси и изменение энтропии ΔS , происходящее при смешивании.
- 271. Найти массу m воды, вошедшей в стеклянную трубку с диаметром канала d=0.8 m, опущенную в воду на малую глубину. Считать смачивание полным.
- 272. Какую работу A надо совершить при выдувании мыльного пузыря, чтобы увеличить его объем от $V_1 = 8$ cm^3 до $V_2 = 16$ cm^3 . Процесс считать изотермическим (коэффициент поверхностного натяжения мыльной пены

$$\sigma = 40 \cdot 10^{-3} H/M$$
).

- 273. Какая энергия выделится при слиянии двух капель ртути диаметром d_1 =0,8 мм и d_2 =1,2 мм в одну каплю (коэффициент поверхностного натяжения ртути σ =500·10⁻³ H/м).
- 274. Пространство между двумя стеклянными параллельными пластинками с площадью поверхности $S=100~cm^2$ каждая, расположенными на расстоянии $l=20~m\kappa m$ друг от друга, заполнено водой. Определить силу, прижимающую пластинки друг к другу. Считать мениск вогнутым с диаметром d, равным расстоянию между пластинками.
- 275. Глицерин подняли по капиллярной трубке диаметром канала d=1 мм на высоту h=2 0мм. Определить коэффициент поверхностного натяжения σ глицерина. Считать смачивание полным (плотность глицерина $1,26\cdot10^3$ кг/м³).
- 276. На сколько давление p воздуха внутри мыльного пузыря больше нормального атмосферного давления p_0 , если диаметр пузыря d=5 мм? (коэффициент поверхностного натяжения мыльной пленки $\sigma = 40 \cdot 10^{-3}$ H/м).
- 277. Спирт по каплям вытекает из сосуда через вертикальную трубку внутренним диаметром d=2 мм. Капли отрываются через время $\Delta \tau = 1$ с одна после другой. Через какое время τ вытечет масса m=10 г спирта? Диаметр шейки капли в момент отрыва считать равным внутреннему диаметру трубки. (Коэффициент поверхностного натяжения мыльной пленки $\sigma = 20 \cdot 10^{-3}$ H/M).
- 278. Капилляр, внутренний радиус которого 0.5 мм, опущен в жидкость. Определить массу жидкости, поднявшейся в капилляре, если ее поверхностное натяжение $\sigma = 60$ мH/м.
- 279. Воздушный пузырь диаметром d=0,02 мм находится на глубине h=25 см под поверхностью воды. Атмосферное давление нормальное. Определить давление воздуха в этом пузырьке. Поверхностное натяжение воды $\sigma=73$ мH/м, а ее плотность $\rho=10^3$ кг/м.
- 280. При определении силы поверхностного натяжения капельным методом число капель глицерина, вытекающего из капилляра, составляет n=50. Общая масса глицерина m=1 z, а диаметр шейки капли в момент отрыва d=1 m. Определить коэффициент поверхностного натяжения σ глицерина.

6 ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ТОК

6.1 Основные формулы

• Закон Кулона:

$$F = \frac{|Q_1||Q_2|}{4\pi\varepsilon_0\varepsilon r^2}$$

где F-сила взаимодействия точечных зарядов, Н;

 Q_1 и Q_2 - точечные заряды, Кл;

r - расстояние между зарядами, м;

є-диэлектрическая проницаемость среды;

 ϵ_0 - электрическая постоянная, Φ/M .

• Напряженность электрического поля и потенциал:

$$\vec{E} = \frac{\vec{F}}{Q}, \qquad \varphi = \frac{\Pi}{Q}$$

где Π - потенциальная энергия точечного положительного заряда Q, находящегося в данной точке поля (при условии, что потенциальная энергия заряда, удаленного в бесконечность, равна нулю).

• Сила, действующая на точечный заряд, находящийся в электрическом поле, и потенциальная энергия этого заряда:

$$\vec{F} = Q\vec{E}, \qquad \Pi = q\varphi$$

• Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей):

$$ec{E} = \sum_{i=1}^n ec{E}_i$$
, $\varphi = \sum_{i=1}^n arphi_i$

где E_i , φ_i - напряженность и потенциал в данной точке поля, создаваемого i-м зарядом:

• Напряженность и потенциал поля, создаваемого точечным зарядом:

$$F = \frac{Q}{4\pi\varepsilon_0\varepsilon r^2}, \quad \varphi = \frac{Q}{4\pi\varepsilon_0\varepsilon r}$$

где r- расстояние от заряда Q до точки, в которой определяются напряженность и потенциал.

• Напряженность и потенциал поля, создаваемого проводящей заряженной сферой радиусом R на расстоянии r от центра сферы:

a)
$$E=0$$
 , $\varphi=\frac{Q}{4\pi\varepsilon_0\varepsilon R}$ (при $r< R$),
б) $E=\frac{Q}{4\pi\varepsilon_0\varepsilon R^2}$, $\varphi=\frac{Q}{4\pi\varepsilon_0\varepsilon R}$ (при $r= R$),
в) $E=\frac{Q}{4\pi\varepsilon_0\varepsilon r^2}$, $\varphi=\frac{Q}{4\pi\varepsilon_0\varepsilon r}$ (при $r> R$),

где Q - заряд сферы.

• Линейная плотность заряда:

$$\tau = \frac{Q}{I}$$

где l – длина проводника, м.

• Поверхностная плотность заряда:

$$\sigma = \frac{Q}{S}$$

где S – площадь поверхности, M^2 .

• Напряженность и потенциал поля, создаваемого распределенными зарядами. Если заряд равномерно распределен вдоль линии с линейной плотностью τ, то

на линии выделяется малый участок длиной dl с зарядом $dQ = \tau dl$. Такой заряд можно рассматривать как точечный и применять формулы: $dE=\frac{\tau dl}{4\pi\varepsilon\varepsilon_0 r^2}, \qquad d\varphi=\frac{\tau dl}{4\pi\varepsilon\varepsilon_0 r}$

$$dE = \frac{\tau dl}{4\pi\varepsilon\varepsilon_0 r^2}, \qquad d\varphi = \frac{\tau dl}{4\pi\varepsilon\varepsilon_0 r}$$

где r - радиус вектор, направленный от выделенного элемента dl к точке, в которой вычисляется напряженность.

Используя принцип суперпозиции электрических полей, находим интегрированием напряженность E и потенциал ϕ поля, создаваемого распределенным зарядом:

$$\vec{E} = \frac{\tau}{4\pi\varepsilon\varepsilon_0} \int \frac{dl}{r^2} \frac{\vec{r}}{r}, \, \varphi = \frac{\tau}{4\pi\varepsilon\varepsilon_0} \int \frac{dl}{r}$$

Интегрирование ведется вдоль всей длины l заряженной линии.

• Напряженность поля, создаваемого бесконечной прямой равномерно заряженной линией или бесконечно длинным цилиндром:

$$E = \frac{\tau}{2\pi\varepsilon\varepsilon_0 r}$$

где r - расстояние от нити или оси цилиндра до точки, напряженность поля в которой вычисляется.

• Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью:

$$E = \frac{\sigma}{2\varepsilon\varepsilon_0}$$

Связь потенциала с напряженностью:

а)
$$\vec{E} = -grad\varphi$$
, или $\vec{E} = -\left(\vec{i}\frac{\partial\varphi}{\partial x} + \vec{j}\frac{\partial\varphi}{\partial y} + \vec{k}\frac{\partial\varphi}{\partial z}\right)$ (в общем случае);
б) $E = \frac{\varphi_1 - \varphi_2}{d}$ (в случае однородного поля);

в) $E = -\frac{d\varphi}{dr}$ (в случае поля, обладающего центральной или осевой симметрией).

Электрический момент диполя:

$$\vec{p} = |Q|\vec{l}$$

где Q - заряд;

l - плечо диполя (векторная величина, направленная от отрицательного заряда к положительному и численно равная расстоянию между зарядами), м.

• Работа сил поля по перемещению заряда Q из точки поля с потенциалом φ_I в точку с потенциалом φ_2 :

$$A_{1,2} = Q(\varphi_1 - \varphi_2)$$

Электроемкость:

$$C = \frac{Q}{\varphi}$$
 или $C = \frac{Q}{U}$

где ϕ – потенциал проводника (при условии, что в бесконечности потенциал проводника принимается равным нулю), В;

U - разность потенциалов пластин конденсатора, B.

• Электроемкость уединенной проводящей сферы радиусом *R*:

$$C = 4\pi\varepsilon\varepsilon_0 R$$

• Электроемкость плоского конденсатора:

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$

где S - площадь пластины (одной) конденсатора, M^2 ;

d - расстояние между пластинами, м.

- Электроемкость батареи конденсаторов:
 - а) при последовательном соединении:

$$\frac{1}{C} = \sum_{i=1}^{N} \frac{1}{C_i}$$

б) при параллельном соединении

$$C = \sum_{i=1}^{N} C_i$$

где N - число конденсаторов в батарее.

• Энергия заряженного конденсатора:

$$W = \frac{QU}{2}, W = \frac{CU^2}{2}, W = \frac{Q^2}{2C}$$

• Сила тока

$$I = \frac{dQ}{dt}$$

где Q - заряд, прошедший через поперечное сечение проводника за время t.

• Плотность тока:

$$J = \frac{I}{S}$$

где S - площадь поперечного сечения проводника.

• Связь плотности тока со средней скоростью < v > направленного движения заряженных частиц:

$$J = en < v >$$

где e - заряд частицы;

n - концентрация заряженных частиц.

- Закон Ома:
 - а) $I = \frac{(\varphi_{1} \varphi_{2})}{R} = \frac{U}{R}$ (для участка цепи, не содержащего э.д.с.)

где $\varphi_1 - \varphi_2 = U$ - разность потенциалов (напряжение) на концах участка цепи; R-сопротивление участка;

б)
$$I = \frac{(\varphi_1 - \varphi_2) \pm \varepsilon}{R}$$
 (для участка цепи, содержащего э.д.с.).

где ε – э.д.с. источника тока, В;

R - полное сопротивление участка (сумма внешних и внутренних сопротивлений), Ом;

в) $I = \frac{\varepsilon}{(R+R_i)}$ (для замкнутой (полной) цепи),

где R - внешнее сопротивление цепи;

 R_i - внутреннее сопротивление цепи.

- Законы Кирхгофа:
 - а) $\sum I_i = 0$ (первый закон);
 - б) $\sum I_i R_i = \sum \varepsilon_i$ (второй закон),

где ΣI_i -алгебраическая сумма сил токов, сходящихся в узле;

 $\Sigma I_i R_i$ - алгебраическая сумма произведений сил токов на сопротивления участков;

 $\sum \varepsilon_i$ -алгебраическая сумма э.д.с.

• Сопротивление *R* и проводимость *G* проводника:

$$R = \rho \frac{l}{S}, G = \gamma \frac{l}{S}$$

где ρ – удельное сопротивление, Ом·м;

ү- удельная проводимость, м/Ом;

l- длина проводника, м;

S- площадь поперечного сечения проводника.

• Сопротивление системы проводников:

а) $R = \sum R_i$ (при последовательном соединении)

б)
$$\frac{1}{R} = \sum \frac{1}{R_i}$$
 (при параллельном соединении),

где R_{i} - сопротивление i-го проводника.

• Работа тока:

$$A = IUt, A = I^2Rt, A = \frac{U^2t}{R}$$

Первая формула справедлива для любого участка цепи, на концах которого поддерживается напряжение U, последние две - для участка, не содержащего э.д.с.

• Мощность тока:

$$P = IU, P = I^2R, P = \frac{U^2}{R}$$

• Закон Джоуля - Ленца:

$$Q = I^2 R t$$

• Закон Ома в дифференциальной форме:

$$\vec{i} = \nu \vec{E}$$

где ү-удельная проводимость,

Е-напряженность электрического поля, В/м;

j-плотность тока.

• Связь удельной проводимости с подвижностью b заряженных частиц (ионов):

$$\gamma = Qn(b_+ + b_-)$$

где Q- заряд иона;

n- концентрация ионов; b_+ и b_- -подвижности положительных и

6.2 Задачи по разделу «Электростатика. Постоянный ток»

- 301. Двум шарикам одного размера и равной массы m=30 мг сообщили по равному одноименному заряду. Какой заряд q был сообщен каждому шарику, если сила взаимного отталкивания зарядов уравновесила силу взаимного притяжения шариков по закону Ньютона? Шарики рассматривать как материальные точки.
- 302. Три одинаковых заряда $q_1 = q_2 = q_3 = 1$ нKл расположены по вершинам равностороннего треугольника. Какой отрицательный заряд Q нужно поместить в центре треугольника, чтобы его притяжение уравновесило силы взаимного отталкивания зарядов?
- 303. Сила взаимодействия между двумя точечными зарядами $q_1 = 2nKn$ и $q_2 = 1nKn$ расположенными в воде $(\varepsilon = 81)$ равна 0.5mH. На каком расстоянии находятся заряды?
- 304. С какой силой взаимодействуют два точечных зарядама q_1 =2 μ K π и q_2 =1 μ K π расположенными в воде (ε =81) на расстоянии r=10 cm.
- 305. Два разноименных точечных заряда притягиваются в вакууме на расстоянии $r=10\ cm$ с такой же силой, как в керосине $(\varepsilon=2)$. Определить на каком расстоянии располагаются заряды в керосине.
- 306. На шелковой нити в воздухе висит шарик m=10 мг. Шарику сообщен заряд q=2 нKл. На каком расстоянии от него следует поместить снизу заряд $q_2=$
 - q_{1} , чтобы сила натяжения нити увеличилась в 2 раза?
- 307. Точечные заряды q_1 =20 мкКл и q_2 =-10 мкКл находятся на расстоянии d=4cм друг от друга. Определить силу F, действующую на заряд q=1 мкКл отстоящий на r_1 =3 cм от первого и на r_2 =5 cм от второго заряда.
- 308. Точечные заряды q_1 =20 мкКл и q_2 =-10 мкКл находятся на расстоянии d=5cм друг от друга. Определить силу F, действующую на заряд q=1 мкКл отстоящий на r_1 =3 cм от первого и на r_2 =4 cм от второго заряда.
- 309. Два положительных точечных заряда q u 9q закреплены на расстоянии d=100 cm друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения зарядов возможны только вдоль прямой, проходящей через закрепленные заряды.
- 310. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α . Шарики погружают в масло. Какова плотность масла ρ , если угол расхождения нитей при погружении в масло, остается неизменным? Плотность материала шариков $\rho_0 = 1.5 \cdot 10^3 \ \kappa z/m^3$, диэлектрическая проницаемость масла $\varepsilon = 2.2$.
 - 311. Пространство между двумя параллельными бесконечными

- плоскостями с поверхностной плотностью зарядов $\sigma_I = +5 \cdot 10^{-8} K_{\pi}/m^2$ и $\sigma_2 = -9 \cdot 10^{-9} K_{\pi}/m^2$ заполнено стеклом ($\varepsilon = 7$). Определить напряженность поля между плоскостями и вне плоскостей.
- 312. На некотором расстоянии от бесконечной равномерно заряженной плоскости с поверхностной плотностью $\sigma = 0$, $l \mu K n / c m^2$ расположена круглая пластинка. Плоскость пластинки составляет с линиями напряженности угол 30^0 . Определить поток Φ_E вектора напряженности через эту пластинку, если ее радиус равен $15 \ cm$.
- 313. Поверхностная плотность заряда бесконечной равномерно заряженной плоскости равна $30 \mu K n/m^2$. Определить поток вектора напряженности через поверхность сферы диаметром 15 см, рассекаемой этой плоскостью пополам.
- 314. На металлической сфере радиусом 15 см находится заряд $q = 2nK\pi$. Определить напряженность Е электростатического поля 1) на расстоянии $r_1 = 10$ см от центра сферы; 2) на поверхности сферы; 3) на расстоянии $r_1 = 20$ см от центра сферы. Построить график зависимости E(r).
- 315. Поле создано двумя равномерно заряженными концентрическими сферами радиусами R_1 =5cm и R_2 =8cm. Заряды сфер соответственно равны q_1 =2 nKn и q_2 =1nKn. Определить напряженность электростатического поля в точках, лежащих от центра сфер на расстояниях: r_1 =3 cm; r_2 =6 cm; r_3 =10 cm; Построить график зависимости E(r).
- 316. Шар радиусом R=10 см заряжен равномерно с объемной плотностью $\rho=10$ $\mu K n/m^3$. Определить напряженность электростатического поля: 1) на расстоянии $r_1=5$ см от центра шара; 2) на расстоянии $r_2=15$ см от центра шара. Построить график зависимости E(r).
- 317. Длинный прямой провод, расположенный в вакууме, несет заряд, равномерно распределенный по всей длине провода с линейной плотностью $\tau=2~\mu K n/m$. Определить напряженность E электростатического поля на расстоянии r=1~m от провода.
- 318. Внутренний цилиндрический проводник длинного прямолинейного коаксиального провода радиусом R_1 =1,5 мм заряжен с линейной плотностью τ_1 =0,2 нКл/м. Внешний цилиндрический проводник этого провода радиусом R_2 =3мм заряжен с линейной плотностью τ_2 = -0,15 нКл/м. Пространство между проводниками заполнено резиной (ε =3). Определить напряженность электростатического поля в точках, лежащих от оси провода на расстояниях: r_1 =1 мм; r_2 =2 мм; r_3 =5 мм;
- 319. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями 2σ u σ . Найти выражение E(x) напряженности электростатического поля между плоскостями и вне их. Построить график зависимости E(x).
- 320. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ_1 =-4 σ и σ_2 =+2 σ , где σ =40 нКл/м². Вычислить напряженности электростатического поля между плоскостями и вне их. Построить график зависимости E(x).

- 321. В вершинах квадрата со стороной 0, 1 м расположены равные одноименные заряды. Потенциал создаваемого ими поля в центре квадрата равен 500 В. Определить заряд.
- 322. На расстоянии 8 см друг от друга в воздухе находятся два заряда по 1 n n0. Определить напряженность и потенциал поля в точке, находящейся на расстоянии n0. n0 см от зарядов.
- 323. В поле бесконечной равномерно заряженной плоскости с поверхностной плотностью заряда $10~\text{мкКл/m}^2$ перемещается заряд из точки, находящейся на расстоянии 0.1~m от плоскости, в точку на расстоянии 0.5~m от нее. Определить заряд, если при этом совершается работа 1~мДж.
- 324. Заряд l nKn притянулся к бесконечной плоскости, равномерно заряженной с поверхностной плотностью $0.2 \ mkKn/m^2$. На каком расстоянии от плоскости находился заряд, если работа сил поля по его перемещению равна l mkDm?
- 325. Полый шар несет на себе равномерно распределенный заряд. Определить радиус шара, если потенциал в центре шара равен φ_1 =200 B, а в точке, лежащей от его центра на расстоянии R=50 cM, φ_2 =40 B.
- 326. Электрическое поле создается бесконечной плоскостью, равномерно заряженной с поверхностной плотностью $\sigma = 1 \ \mu K n/m^2$. Определить разность потенциалов между двумя точками этого поля, лежащими на расстояниях $x_1 = 20 \ cm$ и $x_2 = 50 \ cm$ от плоскости.
- 327. Два точечных заряда q_1 =6 HK_{π} и q_2 =3 HK_{π} находятся на расстоянии d=6 CM друг от друга. Какую работу необходимо совершить внешним силам, чтобы уменьшить расстояние между зарядами вдвое?
- 328. Две параллельные заряженные плоскости, поверхностные плотности заряда которых σ_1 =2 $m\kappa K n/m^2$ и σ_2 =-0,8 $m\kappa K n/m^2$, находятся на расстоянии d=0,6 cm друг от друга. Определить разность потенциалов U между плоскостями.
- 329. Диполь с электрическим моментом p=100 $nKn\cdot M$ свободно установился в свободном электрическом поле напряженностью E=200 $\kappa B/M$. Определить работу внешних сил, которую необходимо совершить для поворота диполя на угол $\alpha=180^{0}$.
- 330. Четыре одинаковых капли ртути, заряженных до потенциала φ =10 B, сливаются в одну. Каков потенциал образовавшейся капли?
- 331. Пылинка массой m=200 мкг, несущая на себе заряд q=40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U=200 В пылинка имела скорость $\upsilon=10$ м/с. Определить скорость υ_0 пылинки до того, как она влетела в поле.
- 332. Электрон, обладающий кинетической энергией 10 эB, влетел в однородное электрическое поле в направлении силовых линий поля. Какой скоростью будет обладать электрон, пройдя в этом поле разность потенциалов U=8 B?
- 333. Электрон с энергией 400 эВ из бесконечности движется вдоль силовой линии по направлению к поверхности металлической заряженной

- сферы радикалом R=10 см. Определить минимальное расстояние σ , на которое приблизится электрон к поверхности сферы, если заряд ее q=-10 нКл.
- 334. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость $\upsilon=10^5$ м/с. Расстояние между пластинами d=8 мм. Найти разность потенциалов U между пластинами и поверхностную плотность заряда σ на пластинах.
- 335. Плоский конденсатор с расстоянием между пластинами d=0.5 см заряжен до разности потенциалов U=300B. Определить объемную плотность энергии ω поля конденсаторы, если диэлектрик-слюда ($\varepsilon=7$).
- 336. Со скоростью $2 \cdot 10^7$ м/с электрон влетает в пространство между обкладками плоского конденсатора в середине зазора в направлении, параллельном обкладкам. При какой минимальной разности потенциалов на обкладках электрон не вылетает из конденсатора, если длина конденсатора l=10 см, а расстояние между его обкладками l см?
- 337. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом φ_1 =100 В электрон имеет скорость υ_I =6 Mм/c. Определить потенциал φ_2 точки поля, дойдя до которой электрон потерял половину своей скорости.
- 339. Заряд -1нKл переместился в поле заряда +1,5нKл из точки с потенциалом 100В в точку с потенциалом 600В. Определить работу сил поля и расстояние между этими точками.
- 340. Плоский конденсатор с площадью пластин $S=100 \text{ см}^2$ и расстоянием между ними d=2 мм заряжен до разности потенциалов U=400 B. Найти энергию поля конденсатора, если диэлектрик между пластинами воздух.
- 341. Разность потенциалов между пластинами плоского конденсатора U=90~B. Площадь каждой пластины $S=60~cm^2$, ее заряд $q=1~\nu K$ л. На каком расстоянии друг от друга находятся пластины?
- 342. Определить отношение энергий двух одинаковых конденсаторов, соединённых последовательно и параллельно, если к ним приложено одно и тоже напряжение?
- 343. Конденсатор с парафиновым диэлектриком (ε =2) заряжен до разности потенциалов 150 В. Напряженность поля $6\cdot10^6$ В/м, площадь пластин $6cm^2$. Определить емкость конденсатора и поверхностную плотность заряда на обкладках.
- 344. Вычислить емкость батареи состоящей из трех конденсаторов емкостью l $m\kappa\Phi$ каждый при всех возможных случаях их соединения.
- 345. Заряд из двух последовательно соединенных конденсаторов емкостью $18~n\Phi$ и $20~n\Phi$ равен $0.9~n\kappa$. Определить напряжение на батарее конденсаторов и на каждом из них.
 - 346. Конденсатор емкостью $6 m \kappa \Phi$ последовательно соединен с

- конденсатором неизвестной емкости и они подключены к источнику постоянного напряжения 12~B. Определить емкость второго конденсатора и напряжение на каждом конденсаторе, если заряд батареи $24~m\kappa K \pi$.
- 347. Конденсаторы емкостью $C_1 = 5 m \kappa \Phi$ и $C_2 = 10 m \kappa \Phi$ заряжены до напряжений U = 60 B и $U_2 = 100 B$ соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими одноименные заряды.
- 348. Площадь пластин плоского слюдяного (ε =6) конденсатора 1, 1 с M^2 , зазор между ними 3 мм. При разрядке конденсатора выделилась энергия 1 мкДж. До какой разности потенциалов был заряжен конденсатор?
- 349. Емкость батареи конденсаторов, образованной двумя последовательно соединенными конденсаторами $C=100n\Phi$, а $q=20\mu K\pi$. Определить емкость второго конденсатора, а также разность потенциалов на обкладках каждого конденсатора, если $C_I=200$ п Φ .
- 350. Площадь пластин плоского конденсатора $1,1 \text{ см}^2$, зазор между ними *3мм*. При разрядке конденсатора выделилась энергия 1 мкДж. До какой разности потенциалов был заряжен конденсатор?
- 351. Плотность тока в никелиновом проводнике длиной 25 m равна $1 mA/m^2$. Определить разность потенциалов на концах проводника
- 352. Определить плотность тока, текущего по проводнику длиной 5 M, если на концах его поддерживается разность потенциалов 2B. Удельное сопротивление материала $\rho = 2 \ M\kappa O M \cdot M$.
- 353. Напряжение на концах проводника сопротивлением 5 Om за 0.5c равномерно возрастает от 0 до 20 B. Какой заряд проходит через проводник за это время?
- 354. Три сопротивления r_1 =12 *Ом*, r_2 =4 *Ом*, r_3 =10 *Ом* соединены параллельно. Общий ток в цепи 0,3A. Найти силу тока, идущего через сопротивление r_1 .
- 355. Три сопротивления r_1 =12 *Ом*, r_2 =4 *Ом*, r_3 =10 *Ом* соединены параллельно. Общий ток в цепи 0,3A. Найти силу тока, идущего через сопротивление r_2 .
- 356. Три сопротивления r_1 =12 *Ом*, r_2 =4 *Ом*, r_3 =10 *Ом* соединены параллельно. Общий ток в цепи 0,3A. Найти силу тока, идущего через сопротивление r_3 .
- 357. Напряжение на шинах электростанции $U=6,6\kappa B$. Потребитель находится на расстоянии $l=10~\kappa m$. Какого сечения нужно взять медный провод для устройства двухпроводной линии передачи, если сила тока в линии I=20A и потери напряжения в проводах не должны превышать 3%?
- 358. Катушка и амперметр соединены последовательно и присоединены к источнику тока. К зажимам катушки присоединен вольтметр сопротивлением $r_{\rm g}$ =1 кOм. Показания амперметра I=0,5A, вольтметра U=100B. Определить сопротивление катушки $r_{\rm K}$.
- 359. Зашунтованный амперметр измеряет токи силой до I=10A. Какую наибольшую силу тока может измерить этот амперметр без шунта, если

- сопротивление амперметра r_a =0,02 *Ом* и сопротивление шунта r_w =5 м*Ом*?
- 360. Амперметр с сопротивлением r_a =0,2 O_M рассчитан на измерения силы тока до I=1A. Каково должно быть сопротивление шунта, чтобы этим прибором можно было измерять ток силой до 10A?
- 361. Два источника ЭДС E_1 =1,6B и E_2 =2B с внутренними сопротивлениями r_1 =0,3 Oм и r_1 =0,2 Oм, соединенные последовательно, дают во внешнюю цепь ток силой I=0,4 A. Определить сопротивление внешней цепи.
- 362. Два элемента с одинаковыми ЭДС $\varepsilon_I = 1,6B$ и внутренними сопротивлениями $r_I = 0,2$ *Ом* и $r_2 = 0,8$ *Ом* соединены параллельно и включены во внешнюю цепь сопротивлением R = 0,64 *Ом*. Найти силу тока в цепи.
- 363.Определить электродвижущую силу (ЭДС) аккумуляторной батареи, ток короткого замыкания которой 10A, если при подключении к ней резистора сопротивлением $2\ Om$, сила тока в цепи равна 1A.
- 364. Два одинаковых источника тока соединены в одном случае последовательно, в другом параллельно и замкнуты на внешнее сопротивление *1 Ом*. При каком внутреннем сопротивлении источника силы тока во внешней цепи будет в обоих случаях одинаковы?
- 365. При внешнем сопротивлении R_1 =8Oм сила тока в цепи I_1 =0,8A, при сопротивлении R_2 =15 Oм сила тока I_2 =0,5A. Определить силу тока $I_{\kappa 3}$ короткого замыкания.
- 366. Внутреннее сопротивление батареи аккумуляторов r_1 =3 Om. Сколько процентов от точного значения ЭДС составляет ошибка, если, измеряя разность потенциалов на зажимах батареи вольтметром с сопротивлением R=200 Om принять ее равной ЭДС?
- 367. К элементу с ЭДС $\varepsilon = 1.5$ В присоединили катушку с сопротивлением R = 0.1 Ом. Амперметр показал силу тока, равную $I_1 = 0.5$ А. Когда к элементу присоединили последовательно еще один элемент с такой же ЭДС, то сила тока в той же катушке оказалась $I_2 = 0.4$ А. Определить внутреннее сопротивление первого и второго элементов.
- 368. Источник тока ЭДС $\varepsilon = 1,5$ B дает во внешнюю цепь ток силой I=1 A. Внутреннее сопротивление источника тока r=0,2 Oм. Определить коэффициент полезного действия источника тока.
- 369. Внутреннее сопротивление аккумулятора 1 Oм. При силе тока 2 A его КПД η =0,8. Определить электродвижущую силу аккумулятора.
- 370. Электродвижущая сила аккумулятора автомобиля 12~B. При силе тока 3~A его КПД равен 0.8. Определить внутреннее сопротивление аккумулятора.
- 371. За время t=29~c при равномерно возраставшей силе тока от нуля до некоторого максимума в проводнике сопротивлением R=5~Om выделилось количество теплоты $Q=4~\kappa \not\square ж$. Определить скорость нарастания силы тока, если сопротивление проводника R=5~Om.
- 372. Сила тока в проводнике сопротивлением R=10~Om за время t=50~c равномерно нарастает от $I_1=5~A$ до $I_2=10~A$. Определить количество теплоты Q,

выделившееся за это время в проводнике.

- 373. К батарее, ЭДС которой E=2 B и внутреннее сопротивление r=0.5 Oм, присоединен проводник. Определить при каком сопротивлении проводника мощность, выделяемая в нем, максимальна? Чему равна эта мощность?
- 374. К зажимам батареи аккумуляторов присоединен нагреватель. ЭДС батареи E=24 B, внутреннее сопротивление r=1 Om. Нагреватель, включенный в цепь, потребляет мощность N=80 Bm. Найти силу тока в цепи и КПД нагревателя.
- 375. Обмотка электрического кипятильника имеет две секции. Если включена только первая секция, вода закипает через t_1 =6 мин, если только вторая, то через t_1 =12 мин. Через сколько минут закипит вода, если обе секции включить: последовательно? параллельно?
- 376. При силе тока I_1 =3 A во внешней цепи батареи выделяется мощность N_1 =18 Bm, а при силе тока I_2 =1 A соответственно N_2 =10 Bm. Найти ЭДС и внутреннее сопротивление батареи.
- 377. Две электрические лампочки с сопротивлениями R_1 =360 O_M и R_2 =240 O_M включены в цепь параллельно. Какая из лампочек потребляет большую мощность и во сколько раз?
- 378. Какую мощность N потребляет нагреватель электрического чайника, если объем V=1 л воды закипает через время $\tau=5$ мин? Начальная температура воды $t_0=13.5$ ^{o}C .
- 379. На плитке мощностью $N=0.5~\kappa Bm$ стоит чайник, в который налит 1литр воды при температуре $t_0=16~^{o}C$. Вода в чайнике закипела через $\tau=20~\mu$ мин после включения плитки. Какое количество теплоты Q потеряло при этом на нагревание самого чайника, на излучение и т.д.?
- 380. Сила тока в проводнике сопротивлением R=20~Om нарастает по линейному закону от $J_0=0~\partial o~J_{mak}=6~A$ за 2 секунды. Определить теплоту Q_1 выделившуюся за первую и Q_2 за вторую секунду, а также найти отношение этих теплот Q_2/Q_1 .

Библиографический список

Основная литература:

1. Трофимова, Т.И. Курс физики / Т.И. Трофимова. - М: Академия, 2007. - 560 с.

Дополнительная литература:

- 1. Физика в таблицах и формулах: учебное пособие. 4-е изд., испр.- М: Академия, 2010.- 448с.
 - 2. Савельев И.В. Курс физики. 3 т.:- СПб: Лань.- Т.2.: 2007.- 480 с.
- 3. Трофимова, Т.И. Краткий курс физики / Т.И. Трофимова. М: Высшая школа, 2006.- 352с.

Приложение А

Табличные значения

1. Фундаментальные физические константы

Физическая постоянная	Обозначение	Значение
Нормальное ускорение свободного	g	$9,81 \text{ m/c}^2$
падения	_	
Гравитационная постоянная	G	$6,67\cdot10^{-11}\mathrm{m}^3/(\mathrm{kr}\cdot\mathrm{c}^2)$
Постоянная Авогадро	N_A	$6,02 \cdot 10^{23} \mathrm{моль}^{-1}$
Молярная газовая постоянная	R	8,31 Дж/(моль·К)
Постоянная Больцмана	k	1,38·10 ⁻²³ Дж/К
Элементарный заряд	e	1,60·10 ⁻¹⁹ Кл
Скорость света в вакууме	c	$3,00\cdot10^{-8}\text{m/c}$
Постоянная Стефана-Больцмана	σ	$5,67 \cdot 10^{-8} \mathrm{BT/(m^2 \cdot K^4)}$
Постоянная закона смещения Вина	b	$2,90\cdot10^{-3}\mathrm{M\cdot K}$
Постоянная Планка	h	6,63·10 ⁻³⁴ Дж·с
Постоянная планка	\hbar	1,05·10 ⁻³⁴ Дж·с
Постоянная Ридберга	R	$1,10\cdot10^7\mathrm{m}^{-1}$
Радиус Бора	$a_{\scriptscriptstyle{0}}$	$0,529 \cdot 10^{-10} \mathrm{M}$
Комптоновская длина волны	λ_{κ}	$2,43\cdot10^{-12}\mathrm{M}$
электрона		
Магнетон Бора	$\mu_{\scriptscriptstyle B}$	$0.927 \cdot 10^{-23} \text{A} \cdot \text{m}^2$
Энергия ионизации атома водорода	E_{i}	$2,18\cdot10^{-18}$ Дж(13,6эВ)
Атомная единица массы	1 а. е. м.	1,660·10 ⁻²⁷ кг
Электрическая постоянная	$\epsilon_{ m o}$	$8.85 \cdot 10^{-12} \Phi/M$
Магнитная постоянная	$\mu_{ m o}$	$4\pi \cdot 10^{-7} \Gamma$ H/M

2. Некоторые астрономические величины

Наименование	Значение	Наименование	Значение
Радиус Земли Масса Земли Радиус Солнца Масса Солнца Радиус Луны Масса Луны	$6,37 \cdot 10^6$ м $5,98 \cdot 10^{24}$ кг $6,95 \cdot 10^8$ м $1,98 \cdot 10^{30}$ кг $1,74 \cdot 10^6$ м $7,33 \cdot 10^{22}$ кг	Расстояние от центра Земли до центра Солнца Расстояние от центра Земли до центра Луны	1,49·10 ¹¹ м 3,84·10 ⁸ м

3. Плотность твердых тел

Твердое	Плотность	Твердое	Плотность	Твердое	Плотность
тело	$K\Gamma/M^3$	тело	кг/м ³	тело	кг/м ³
Алюминий	$2,70 \cdot 10^3$	Железо	$7,88 \cdot 10^3$	Свинец	11,3·10 ³
Барий	$3,50\cdot10^3$	Литий	$0.53 \cdot 10^3$	Серебро	$10,5\cdot 10^3$
Ванадий	$6,02\cdot10^3$	Медь	$8,93 \cdot 10^3$	Цезий	$1,90.10^3$
Висмут	$9,80\cdot10^{3}$	Никель	$8,90 \cdot 10^3$	Цинк	$7,15\cdot10^3$

4. Плотность жидкостей

Жидкость	Плотность, $\kappa \Gamma / M^3$	Жидкость	Плотность, $\kappa \Gamma / M^3$
Вода (при 4°С)	$1,00.10^3$	Сероуглерод	$1,26\cdot10^3$
Глицерин	$1,26\cdot10^3$	Спирт	0.90.103
Ртуть	$13,6\cdot10^3$	Cimpi	$0.80 \cdot 10^3$

5. Плотность газов (при нормальных условиях)

evinionio en la ser (inpri in epinami primari)			
Газ	Плотность, кг/м ³	Газ	Плотность, кг/м ³
Водород	0,09	Гелий	0,18
Воздух	1,29	Кислород	1,43

6. Коэффициент поверхностного натяжения жидкостей

Жидкость	Коэффициент, мН/м	Жидкость	Коэффициент,мН/м
Вода	72	Ртуть	500
Мыльная вода	40	Спирт	22

7. Эффективный диаметр молекулы

- T T	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J ·	
Газ	Диаметр, м	Газ	Диаметр, м
Азот	$3,0\cdot10^{-10}$	Гелий	$1,9 \cdot 10^{-10}$
Водород	$2,3\cdot10^{-10}$	Кислород	$2,7 \cdot 10^{-10}$

8. Диэлектрическая проницаемость

Вещество	Проницаемость	Вещество	Проницаемость
Вода	81	Парафин	2,0
Масло	2,2	Стекло	7,0
трансформаторное			

9. Удельное сопротивление металлов

Металл	Удельное	Металл	Удельное
	сопротивление, Ом∙м		сопротивление, Ом∙м
Железо	$9.8 \cdot 10^{-8}$	Нихром	$1,1\cdot 10^{-6}$
Медь	$1,7.10^{-8}$	Серебро	$1,6\cdot10^{-8}$

10. Энергия ионизации

Вещество	Е _і , Дж	E _i , эB
Водород	$2,18\cdot10^{-18}$	13,6
Гелий	$3,94 \cdot 10^{-18}$	24,6
Литий	$1,21\cdot 10^{-17}$	75,6
Ртуть	$1,66\cdot10^{-18}$	10,4

11. Подвижность ионов в газах, $M^2/(B \cdot c)$

Газ	Положительные ионы	Отрицательные ионы
Азот	$1,27\cdot10^{-4}$	$1,81\cdot10^{-4}$
Водород	$5,4\cdot10^{-4}$	$7,4\cdot10^{-4}$
Воздух	$1,4.10^{-4}$	$1,9 \cdot 10^{-4}$

12. Показатель преломления

Вещество	Показатель	Вещество	Показатель
Алмаз	2,42	Глицерин	1,47
Вода	1,33	Стекло	1,50

13. Работа выхода электронов

	1	
Металл	А, Дж	А, эВ
Калий	$3,5\cdot 10^{-19}$	2,2
Литий	$3,7 \cdot 10^{-19} \\ 10 \cdot 10^{-19}$	2,3
Платина	10.10^{-19}	6,3
Рубидий	$3,4\cdot10^{-19}$	2,1
Серебро	$7,5\cdot 10^{-19}$	4,7
Цезий	$3,2\cdot 10^{-19}$	2,0
Цинк	$ 3,4\cdot10^{-19} 7,5\cdot10^{-19} 3,2\cdot10^{-19} 6,4\cdot10^{-19} $	4,0

14. Относительные атомные массы (округленные значения) A_r и порядковые номера Z некоторых элементов

Элемент	Символ	A	Z	Элемент	Символ	A	Z
Азот	N	14	7	Марганец	Mn	55	25
Алюминий	Al	27	13	Медь	Cu	64	29
Аргон	Ar	40	18	Молибден	Mo	96	42
Барий	Ba	137	56	Натрий	Na	23	11
Ванадий	V	60	23	Неон	Ne	20	10
Водород	Н	1	1	Никель	Ni	59	28
Вольфрам	W	184	74	Олово	Sn	119	50
Гелий	Не	4	2	Платина	Pt	195	78
Железо	Fe	56	26	Ртуть	Hg	201	80

Золото	Au	197	79	Cepa	S	32	16
Калий	K	39	19	Серебро	Ag	108	47
Кальций	Ca	40	20	Уран	U	238	92
Кислород	O	16	8	Углерод	C	12	6
Магний	Mg	24	12	Хлор	Cl	35	17

15. Масса атомов легких изотопов

Изотоп	Символ	Macca,	Изотоп	Символ	Macca,
		а.е.м.			а.е.м.
Нейтрон	1_0 n	1,00867	Бор	$^{10}_{5}{ m B}$	10,01294
Водород	$^1_1\mathrm{H}$	1,00783		¹¹ ₅ B	11,00930
	$_{1}^{2}$ H	2,01410	Углерод	¹² ₆ C	12,00000
	3_1 H	3,01605		$^{13}_{6}$ C	13,00335
Гелий	$\frac{3}{2}$ He	3,01603		¹⁴ ₆ C	14,00324
	$\frac{4}{2}$ H e	4,00260	Азот	¹⁴ ₇ N	14,00307
Литий	⁶ ₃ Li	6,01513	Кислород	¹⁶ ₈ O	15,99491
	$_{3}^{7}$ Li	7,01601		¹⁷ ₈ O	16,99913
Бериллий	$_{4}^{7}\mathrm{Be}$	7,01693			
	⁹ ₄ Be	9,01219			

16. Периоды полураспада радиоактивных изотопов

Изотоп	Символ	Период	Изотоп	Символ	Период
		полураспада			полураспада
Актиний	²²⁵ ₈₉ Ac	10сут	Йод	¹³¹ ₅₃ I	8сут
Кобальт	⁶⁰ ₂₇ Co	5,3года	Стронций	$^{90}_{38}$ Sr	27лет
Магний	$^{27}_{12}{ m Mg}$	10мин	Фосфор	$^{32}_{15}$ P	14,3сут
Радий	²²⁶ ₈₆ Ra	1620лет	Церий	¹⁴⁴ ₅₈ Ce	285сут
Радон	²²² ₈₆ Rn	3,8сут			

17. Масса и энергия покоя некоторых частиц

Частица	m_{o}	•	E _o		
	КГ	а.е.м.	Дж	МэВ	
Электрон	$9,11\cdot10^{-31}$	0,00055	$8,16\cdot10^{-14}$	0,511	
Протон	$1,672 \cdot 10^{-27}$	1,00728	$1,50 \cdot 10^{-10}$	938	
Нейтрон	$1,675\cdot10^{-27}$	1,00867	$1,51\cdot10^{-10}$	939	
Дейтрон	$3,35\cdot10^{-27}$	2,01355	$3,00\cdot10^{-10}$	1876	
α-частица	$6,64 \cdot 10^{-27}$	4,00149	$5,96 \cdot 10^{-10}$	3733	
Нейтральный	$2,41\cdot10^{-28}$	0,14498	$2,16\cdot10^{-11}$	135	

π-мезон		
TI-MC3OH		

18.Множители и приставки для образования десятичных кратных и дольних единиц и их наименования

Приставка	Приставка		Приставка		Множи-
наименование	обозначение	тель	наименование	обозначение	тель
экса	Э	10^{18}	деци	Д	10^{-1}
пэта	П	10^{15}	санти	c	10^{-2}
тера	T	10^{12}	милли	M	10^{-3}
гига	Γ	10^{9}	микро	MK	10^{-6}
мега	M	10^{6}	нано	Н	10^{-9}
кило	К	10^{3}	пико	П	10^{-12}
гекто	Γ	10^{2}	фемто	ф	10^{-15}
дека	да	10^{1}	атто	a	10^{-18}

19. Внесистемные единицы, допущенные к применению в учебном процессе по физике (в соответствии со стандартом СЭВ 1052—78)

Величина	Единица		
	наименование	обозначение	соотношение с единицей
Время*	минута	МИН	60c
	час	Ч	3600c
	сутки	сут	86400c
Плоский угол	градус	0	$(\pi/180)$ рад=1,74·10 ⁻² рад
	минута	'	$(\pi/10800)$ рад=2,91·10 ⁻⁴ рад
	секунда	''	$(\pi/648000)$ рад= $4,85\cdot10^{-6}$ рад
Объем,	литр	Л	10^{-3}m^3
вместимость	_		
Энергия	электрон-вольт	эВ	1,60·10 ^{−19} Дж
Macca	тонна	Т	1000кг
	атомная	а.е.м.	1.66·10 ^{−27} кг
	единица массы		
Оптическая	диоптрия	дптр	1 m^{-1}
сила			
Относительная	процент	%	10^{-2}
величина	промилле	% o	10^{-3}
	миллионная	$\mathbf{M}\mathbf{\Pi}\mathbf{H}^{-1}$	10^{-6}
	доля		
Логарифмичес	бел	Б	<u> </u>
кая величина	децибел	дВ	

^{*} Допускается применение других единиц времени, получивших широкое распространение, например неделя, месяц, год и др.

20. Греческий алфавит

Обозначения букв	1	Обозначения букв	Названия букв
Α,α	альфа	N,v	ню
В,β	бета	Ξ,ξ	кси
Γ,γ	гамма	0,0	омикрон
Δ,δ	дэльта	Π,π	ПИ
E,ε	эпсилон	P,p	po
Z,ζ	дзета	Σ,σ	сигма
Н,η	эта	Τ,τ	тау
Θ , \mathbb{T}	тэта	Υ,υ	ипсилон
I,t	иота	Ф,ф	фи
K,æ	каппа	Χ,χ	хи
Λ,λ	ламбда	Ψ, Ψ	пси
M,µ	МИ	Ω,ω	омега