МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ»

(Филиал ТИУ в г.Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

основной профессиональной образовательной программы высшего образования по направлению подготовки 13.03.02 Электроэнергетика и электротехника профиль Электроснабжение

г. Ноябрьск, 2019 г.

Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденный приказом Минобрнауки РФ от «28» февраля 2018 года № 144

Рассмотрен на заседании кафедры ТТНК Протокол от 26.09. 2019 г. №1

Зав. кафедрой ТТНК, д.п.н, профессор,

А.В. Козлов

Разработчик: доцент кафедры ТТНК, канд. пед. наук ______И.Ю. Аникин

Общие положения

Фонд оценочных средств (далее – Φ OC) – это совокупность контролирующих материалов (оценочных средств) по основной образовательной программе по направлению подготовки 13.03.02 Электроэнергетика и электротехника, дисциплине, практике, ГИА, предназначенных для изменения уровня достижений обучающимися результатов обучения.

Структурными элементами Φ OC являются комплекты контрольоценочных средств (далее – KOC), разработанные по дисциплинам в соответствии с учебным планом.

КОС включает в себя типовые тестовые задания. В каждом задании необходимо выбрать правильный ответ.

Вариант 1

Б1.В.7 Электрические машины

- 1. Машины постоянного тока состоят из:
 - 1) вращающейся части;
 - 2) подвижной части;
 - 3) скользящей части;
 - 4) не подвижной и вращающейся части.
- 2. Часть машины, в обмотке которой при вращении магнитного поля индуцируется ЭДС:
 - 1) ярмо;
 - 2) ротор;
 - 3) сердечник;
 - 4) беличье колесо.
- 3. Машина постоянного тока, преобразующая механическую энергию в электрическую:
 - 1) турбина;
 - 2) трансформатор;
 - 3) генератор;
 - 4) двигатель.
- 4. В генераторе щетки и коллектор необходимы:
 - 1) для магнитной проводимости;
 - 2) для выпрямления переменной ЭДС;
 - 3) для периода коммутации;
 - 4) для механического насыщения.
- 5. В двигателе коллектор и щетки обеспечивают:
 - 1) полное потокосцепление;

- 2) активную проводимость;
- 3) непрерывность вращения якоря;
- 4) момент инерции.
- 6. Воздействие тока якоря на магнитное поле МПТ называется:
 - 1) чувствительностью якоря;
 - 2) частотой вращения якоря;
 - 3) угловой скоростью якоря;
 - 4) реакцией якоря.
- 7. Разрушение коллектора и щеток в МПТ происходит с изменением тока и увеличением реактивной ЭДС, т.к. возникает:
 - 1) вращающий момент;
 - 2) противо-ЭДС;
 - 3) МДС;
 - 4) короткое замыкание.
- 8. Дополнительные полюса в МПТ обеспечивают:
 - 1) равномерное распределение ЭДС;
 - 2) улучшение условий коммутации;
 - 3) предотвращение аварии;
 - 4) снижение нагрузки на якорь.
- 9. Машина постоянного тока, преобразующая электрическую энергию в механическую называется:
 - 1) турбина;
 - 2) трансформатор;
 - 3) генератор;
 - 4) двигатель.
- 10. Общее устройство асинхронного двигателя
 - 1) якорь, статор;
 - 2) коллектор, якорь, статор;
 - 3) статор, ротор;
 - 4) коллектор, ротор, статор.
- 11. Недостатки асинхронного двигателя:
 - 1) сложность конструкции;
 - 2) сложная схема включения;
 - 3) большой пусковой ток;
 - 4) большие габариты и вес.
- 12. Поясните принцип обратимости электрической техники:
 - 1) изменения направления вращения;

- 2) изменение частоты вращения;
- 3) изменением функционального предназначения машины;
- 4) нет правильного ответа.

13. Асинхронным двигателем называется:

- 1) двигатель, у которого скорость вращения магнитного поля статора опережает скорость вращения ротора;
- 2) двигатель, у которого скорость вращения магнитного поля статора отстает от скорости вращения ротора;
- 3) двигатель, у которого эти скорости одинаковы;
- 4) двигатель, у которого большой пусковой ток.

14. Реверсирование это:

- 1) изменение частоты вращения;
- 2) изменение направления вращения;
- 3) изменением принципа действия;
- 4) нет правильного ответа.

15. Отличие конструкции фазного ротора от короткозамкнутого ротора:

- 1) наличием коллектора с обмоткой;
- 2) наличием контактных колец;
- 3) нет отличий;
- 4) нет правильного ответа.

16. Ротор синхронной машины представляет собой:

- 1) турбоагрегат;
- 2) беличье колесо;
- 3) электромагнит;
- 4) гидроагрегат.

17. Синхронная машина работает в режиме:

- 1) генератора;
- двигателя;
- 3) двигателя и генератора;
- 4) нет правильного ответа.

Б1.В.14 Электромагнитная совместимость в электроэнергетике

- 18. Какие элементы, соприкасающихся с землей, относятся к естественным заземлителям:
 - 1) металлические;
 - 2) полупроводниковые;
 - 3) диэлектрические;
 - 4) ферромагнитные.

- 19. Определеный ожидаемый максимальный уровень электромагнитного воздействия, которое может воздействовать на прибор оборудования или систему, работающие в определенных условиях:
 - 1) максимальный уровень;
 - 2) уровень электромагнитной совместимости;
 - 3) класс защита прибора;
 - 4) нет верного ответа.
- 20. В середине пролета напряженность электрического поля под ВЛЭП:
 - 1) такая же, как и у опор;
 - 2) наибольшая;
 - 3) наименьшая;
 - 4) нет правильного ответа.
- 21. Наиболее сильные радиопомехи и акустический шум возникают:
 - 1) при коронировании линий сверхвысокого напряжения в ясную погоду;
 - 2) при коронировании линий среднего напряжения;
 - 3) при коронировании линий сверхвысокого напряжения во время дождя и снега;
 - 4) нет верного ответа.
- 22. Влияние ВЛЭП на линии связи через гальваническую связь (полное сопротивление связи) обусловлено:
 - 1) протеканием в земле силовых токов;
 - 2) наличием вокруг проводной ВЛЭП электрического поля;
 - 3) прохождением части или всего переменного тока ВЛ по цепи проводземля;
 - 4) нет верного ответа.
- 23. Измерение токовых помех исходящих от объекта, осуществляется при помощи:
 - 1) генератора тока;
 - 2) трансформатора тока;
 - 3) трансформатора напряжения;
 - 4) силового трансформатора.
- 24. Экранирование служит:
 - 1) для ослабления электрических, магнитных и электромагнитных полей;
 - 2) для ограничения уровня напряжения в сети;
 - 3) для защиты приемных устройств от импульсных токов;
 - 4) нет верного ответа.
- 25. Принцип действия ограничителей перенапряжения базируется на использовании:

- 1) резисторов, обладающих нелинейной вольт-амперной характеристикой;
- 2) емкостных делителей напряжения;
- 3) импульсных источников питания;
- 4) нет верного ответа.
- 26. Сетевой фильтр свободно пропускает:
 - 1) высокие частоты;
 - 2) низкие частоты;
 - 3) импульсные сигналы;
 - 4) аналоговые сигналы.
- 27. Рабочие токи и напряжения в сигнальных цепях и линиях передачи данных:
 - 1) имеют низкую частоту;
 - 2) имеют высокую частоту;
 - 3) могут иметь широкий спектр частот;
 - 4) имеют сверхнизкую частоту.
- 28. Основными элементами пассивных фильтров являются:
 - 1) катушки индуктивности и конденсаторы;
 - 2) сопротивления и диоды;
 - 3) предохранители и сопротивления;
 - 4) диоды, сопротивления и катушки индуктивности.
- 29. Эффект ограничения напряжения варисторами основан на том, что при превышении рабочего напряжения:
 - 1) его сопротивление увеличивается на много порядков;
 - 2) его сопротивление уменьшается на много порядков;
 - 3) его индуктивность увеличивается на много порядков;
 - 4) нет верного ответа.
- 30. Если сопротивления источника и приемника помех велики, то рекомендуется использовать:
 - 1) нет верного ответа;
 - 2) индуктивный фильтр;
 - 3) индуктивно-емкостной фильтр;
 - 4) емкостной фильтр.
- 31. Если сопротивления источника и приемника помех малы, то рекомендуется использовать:
 - 1) индуктивный фильтр;
 - 2) емкостной фильтр;
 - 3) индуктивно-емкостной фильтр;
 - 4) нет верного ответа.
- 32. Экран устанавливается:

- 1) над источником и приемником помех;
- 2) между источником и приемником помех;
- 3) под источником и приемником помех;
- 4) не имеет значения.
- 33. Проводник, соединяющий заземляющие части с заземлителем:
 - 1) проводник;
 - 2) контур заземления;
 - 3) заземляющий проводник;
 - 4) нет правильного ответа.

Б1.Б.24 Основы электропривода

- 34. Система устройств, для приведения в движение исполнительных органов работы машины с помощью электрической энергии называется:
 - 1) механический привод;
 - 2) электропривод;
 - 3) гидропривод;
 - 4) ручной привод.
- 35. Длительность работы электропривода и ее характер определяют:
 - 1) продолжительность ремонта;
 - 2) период коммутации;
 - 3) рабочий режим привода;
 - 4) коэффициент затухания.
- 36. Режим работы, в котором период работы чередуется с паузами, называется:
 - 1) кратковременным;
 - 2) продолжительным;
 - 3) повторно-кратковременным;
 - 4) покоя.
- 37. Для выбора мощности двигателя применяется метод:
 - 1) эквивалентного момента;
 - 2) эквивалентной нагрузки;
 - 3) эквивалентного источника;
 - 4) эквивалентного тока.
- 38. Тип двигателя выбирают в зависимости от:
 - экологии;
 - 2) условий окружающей среды;
 - 3) продолжительности работы;
 - 4) объема работ.
- 39. Критерием для оценки механических характеристик служит:
 - 1) надежность;

- 2) жесткость;
- 3) металлоемкость;
- 4) прочность.
- 40. Основным элементом электропривода является:
 - 1) трансформатор;
 - 2) генератор;
 - 3) гидротурбина;
 - 4) электродвигатель.
- 41. Время цикла при повторно-кратковременном режиме не должно превышать:
 - 1) 10 минут;
 - 2) 15 минут;
 - 3) 20 минут;
 - 4) 30 минут.
- 42. При тяжелых условиях пуска двигателя его проверку проводят по:
 - 1) пусковому моменту;
 - 2) номинальному току;
 - 3) перегрузочной способности;
 - 4) продолжительности работы.
- 43. Согласно схеме управления можно осуществить пуск двигателя по схеме:
 - 1) вперед, остановка;
 - 2) вперед, остановка, назад;
 - 3) назад, остановка;
 - 4) вперед, назад.
- 44. Состав аппаратуры ручного управления включает в себя:
 - 1) автомат, рубильник, пакетный выключатель;
 - 2) магнитный пускатель, реле;
 - 3) кнопка управления, пакетный переключатель;
 - 4) рубильник, реле.
- 45. Предохранитель предназначен:
 - 1) для защиты от токов перегрузки;
 - 2) для защиты от токов К.З. и перегрузок;
 - 3) для защиты от всех аварийных режимов;
 - 4) нет правильного ответа.
- 46. Режим работы, в котором нет пауз, называется:
 - 1) кратковременным;
 - 2) продолжительным;
 - 3) повторно-кратковременным;
 - 4) постоянным.

47. ПВ% - это:

- 1) процент быстроты включения;
- 2) процент быстроты выключения;
- 3) процент периода вращения;
- 4) процент продолжительности включения.

48. Для приведения в соответствие величин напряжения сети и электрического двигателя применяют:

- 1) преобразователь частоты;
- 2) выпрямитель;
- 3) трансформатор;
- 4) делитель напряжения.

Б1.В.11 Электрические аппараты

49. Электрический аппарат – это:

- 1) электротехническое устройство, которое используется для включения и отключения электрических цепей, контроля, измерения, защиты, управления регулирования установок предназначенных для передачи, преобразования, распределения и потребления электроэнергии;
- 2) электротехническое устройство, которое используется для включения и отключения электрических цепей;
- 3) электрическая машина которая служит для преобразования электрической энергии в механическую;
- 4) электротехническое устройство, которое используется для включения и отключения электрических цепей, контроля.

50. Признаки классификаций электрических аппаратов:

- 1) цена;
- 2) внешний вид;
- 3) назначение;
- 4) область применения;
- 5) род тока.

51. Какой аппарат не защищает сеть от перегрузок:

- 1) автомат с тепловым расцепителем;
- 2) автомат с электромагнитным расцепителем;
- 3) предохранитель;
- 4) автомат с комбинированным расцепителем.

52. Для отключения токов нагрузки используют:

2) pas	ьединитель;
3) вын	ключатель нагрузки;
4) кор	откозамыкатель.
	ты отходящих линий на КТП при перегрузках и межфазных корот-
	ий (далее – КЗ) применяют:
	бчатый разрядник;
	оматический воздушный выключатель;
3) вен	тильный разрядник;
4) тра	нсформатор тока.
54. Для откл	ючения токов КЗ используют:
1) отд	елитель;
2) pas	ъединитель;
3) вын	ключатель вакуумный;
4) кор	откозамыкатель.
55 H	~
	очения и отключения цепи без тока, а также для создания видимого
разрыва испо	
	елитель;
, •	ьединитель;
	ключатель;
4) кор	откозамыкатель.
56. От наведо	енных перенапряжений воздушные линии защищают:
1) вын	ключатели;
2) pa3	рядники;
3) тра	нсформаторы тока;
4) pas	ъединители.
57 II ng ogwin	ючения цепи в безтоковую паузу применяют:
	дохранитель;
<u>-</u>	откозамыкатель;
, ,	
	елитель;
4) pa3	рядник.

58. От наведенных перенапряжений оборудование подстанций защищают:

1) выключатели;

2) короткозамыкатели;

1) отделитель;

- ΟΠΗ;
- 4) разъединители.
- 59. Для ограничения токов короткого замыкания используют:
 - 1) реакторы;
 - 2) короткозамыкатели;
 - 3) отделители;
 - 4) выключатели.
- 60. Для понижения высокого напряжения до значений, удобных для измерительных приборов и реле, используют:
 - 1) регулятор под нагрузкой (РПН);
 - 2) трансформатор тока;
 - 3) трансформатор напряжения;
 - 4) переключатель без возбуждения (ПБВ).
- 61. Можно использовать для отключения рабочих токов, но не токов КЗ:
 - 1) отделитель;
 - 2) разъединитель;
 - 3) выключатель нагрузки;
 - 4) разрядник.
- 62. Рубильники относятся к аппаратам:
 - защитным;
 - 2) управляющим;
 - 3) коммутирующим;
 - 4) переключающим.
- 63. Магнитные пускатели предназначены:
 - 1) для защиты цепей от аварийных режимов;
 - 2) для ручного включения и отключения потребителей;
 - 3) для пуска, останова, реверсирования электрических двигателей;
 - 4) для автоматического оперативного переключения сетей.

Вариант 2

Б1.В.7 Электрические машины

- 1. Обратимость электрической машины это:
 - 1) возможность работы как в генераторном так и в двигательном режиме;
 - 2) изменения направления вращения;
 - 3) изменение частоты вращения;

- 4) возможность резкого изменения вращающего момента и мощности на валу двигателя.
- 2. Конструкция фазного ротора от короткозамкнутого ротора отличается:
 - 1) наличием коллектора с обмоткой;
 - 2) нет отличий;
 - 3) наличием контактных колец;
 - 4) нет правильного ответа.
- 3. Машины постоянного тока состоят из:
 - 1) вращающейся части;
 - 2) подвижной части;
 - 3) не подвижной и подвижной;
 - 4) не подвижной и вращающейся части.
- 4. Машина постоянного тока, преобразующая электрическую энергию в механическую называется:
 - 1) турбина;
 - 2) двигатель.
 - 3) генератор;
 - 4) трансформатор.
- 5. Общее устройство синхронного двигателя
 - 1) якорь, статор;
 - 2) коллектор, якорь, статор;
 - 3) статор, ротор;
 - 4) коллектор, ротор, статор.
- 6. Действие вихревых токов в магнитопроводе приводит к:
 - 1) возрастанию МДС;
 - 2) уменьшению МДС;
 - 3) потерям энергии;
 - 4) размагничиванию.
- 7. Назначение трансформатора:
 - 1) для преобразования электрической энергии в механическую;
 - 2) для преобразования напряжения;
 - 3) для преобразования механической энергии в электрическую;
 - 4) для преобразования частоты электрической энергии.
- 8. Полый цилиндр электрической машины, собранный из изолированных клинообразных медных пластин называется:
 - 1) статор;
 - 2) щетки;
 - 3) сердечник;

- 4) коллектор.
- 9. По какой схеме включения асинхронного двигателя снижается его пусковой ток?
 - 1) введение в схему пускового реостата;
 - 2) введение в схему конденсаторной батареи;
 - 3) соединение обмотки в «треугольник»;
 - 4) соединение обмотки в «звезду».
- 10. К источнику питания присоединяется:
 - 1) первичная и вторичная обмотки трансформатора;
 - 2) обмотка постоянного тока;
 - 3) первичная обмотка;
 - 4) вторичная обмотка.
- 11. Режим понижающего трансформатора правильно записан в выражении:
 - 1) $U_1 < U_2$;
 - 2) $U_1 = U_2$;
 - 3) $U_1 > U_2$;
 - 4) $U_1 = U_2 = 0$.
- 12. Реверсирование это:
 - 1) изменение частоты напряжения;
 - 2) изменение частоты вращения;
 - 3) изменение направления вращения;
 - 4) изменением принципа действия.
- 13. Трансформатор в отличии от автотрансформатора:
 - 1) не используется в автомобиле;
 - 2) позволяет плавно регулировать U;
 - 3) позволяет ступенчато регулировать U;
 - 4) производит винтовое регулирование напряжения U.
- 14. Потери мощности трансформатора определяются:
 - 1) $P_2 = P_1 P_{M} P_{cm}$;
 - $2) \quad P_2 = const;$
 - 3) $P_2 = P_1 + P_M + P_{cm}$;
 - 4) $P_2 = P_1 + P_M P_{cm}$.
- 15. Обмотка трансформатора, к которой подключен приёмник электроэнергии называется:
 - 1) первичной;
 - 2) постоянного тока;
 - 3) вторичной;
 - 4) возбуждения.

- 16. Если трансформатор подключить к цепи постоянного тока:
 - 1) ничего не изменится;
 - 2) он увеличит мощность;
 - 3) он уменьшит потребляемый ток из сети;
 - 4) он сгорит.

Б1.В.14 Электромагнитная совместимость в электроэнергетике

- 17. Устройство, используемое для уменьшения электромагнитного поля, проникающего в защищаемую область:
 - 1) заземление;
 - 2) электромагнитное возмущение;
 - 3) экран;
 - 4) приемник.
- 18. Ток во время удара молнии:
 - 1) ток разряда;
 - 2) ток молнии;
 - 3) ток в устройстве заземления;
 - 4) нет верного ответа.
- 19. Совокупность заземлителя и заземляющих проводников:
 - 1) внутренний заземлитель;
 - 2) заземление;
 - 3) внешний заземлитель;
 - 4) заземляющее устройство.
- 20. Выполненный за пределами территории энергообъекта заземлитель:
 - 1) внутренний заземлитель;
 - 2) выносной заземлитель;
 - 3) заземлитель;
 - 4) внешний заземлитель.
- 21. Заряды статического электричества возникают за счёт двух эффектов:
 - 1) накопления и зарядки;
 - 2) индукций и трения;
 - 3) перезарядки и возбуждения;
 - 4) накопление и трения.
- 22. Грозовой разряд, разряды статического электричества, технические электромагнитные процессы, ядерный взрыв это источники помех:
 - 1) естественные;
 - 2) искусственные;
 - 3) внешние;

- 4) внутренние.
- 23. Замкнутый горизонтальный заземлитель, продолженный вокруг здания:
 - 1) внешний контур заземления;
 - 2) внутренний контур зазаземления;
 - 3) контур заземления;
 - 4) внешний и внутренний контур заземления.
- 24. Разряды атмосферного электричества, разряды статистического электричества между телами, получившими заряды разной полярности относится к источникам помех называемых:
 - 1) внешними;
 - 2) естественными;
 - 3) искусственными;
 - 4) внутренними.
- 25. Сторонняя система случайно воздействующая на расматриваемую через нарушительные или функционированные связи называют:
 - 1) источник помех;
 - 2) помехи;
 - 3) генератор;
 - 4) нет верного ответа.
- 26. Заземлитель, специально выполняемый для целей заземления называют:
 - 1) заземлитель;
 - 2) искусственный заземлитель;
 - 3) заземляющее устройство;
 - 4) нет верного ответа.
- 27. Все процессы при нормальных рабочих и символичных режимах работы приборов, машин, электроэнергетических установок, устройств информационной техники находящихся в близи средств автоматизаций относятся к источникам помех:
 - 1) производственные;
 - 2) естественные;
 - 3) технические;
 - 4) искусственные.
- 28. Проводник или совокупность металлически соединенных между собой проводников, находящихся в соприкосновении с землей называют:
 - 1) заземлитель;
 - 2) внешний заземлитель;
 - 3) внутренний заземлитель;
 - 4) внешний и внутренний заземлитель.
- 29. Гальваническое влияние осуществляется через общие полные...

- 1) провода;
- 2) сопротивления;
- 3) соединения;
- 4) провода и соединения.
- 30. Снижение емкостного влияния в случае гальванически разделенных контуров может быть достигнуто с помощью применения:
 - 1) емкостей;
 - 2) индуктивностей;
 - 3) экранированных проводов;
 - 4) емкостей и индуктивностей.
- 31. Влияют ли геометрические параметры соединительных проводников на гальваническую связь?
 - да;
 - нет;
 - 3) в конкретных случаях;
 - 4) нет верного ответа.
- 32. Применение световодов для передачи сигналов приводит с точки зрения емкостного влияния к тому, что помехи:
 - 1) возрастают;
 - 2) остаются неизменными;
 - 3) уменьшаются;
 - 4) уменьшаются или остаются неизменными.
- 33. Для ослабления постоянных магнитных полей используют
 - 1) экраны из органических материалов;
 - 2) экраны из немагнитных металлов;
 - 3) экраны из диэлектриков:
 - 4) экраны из ферромагнитных материалов.
- 34. Экран устанавливается:
 - 1) над источником и приемником помех;
 - 2) между источником и приемником помех;
 - 3) под источником и приемником помех;
 - 4) не имеет значения.
- 35. Ограничители перенапряжений служат для:
 - 1) снижения перенапряжений в электрических и информационно-электронных системах;
 - 2) повышения уровня питающего напряжения в электрических и информационно-электронных системах;

- 3) удаления высших гармоник в электрических и информационноэлектронных системах;
- 4) нет верного ответа.

Б1.Б.24 Основы электропривода

- 36. Электропривод состоит из каких основных частей, как...
 - 1) силовая часть и система управление;
 - 2) механическая и динамическая;
 - 3) система регулирования;
 - 4) система устойчивости.
- 37. Динамическое торможение ещё называется...
 - 1) торможения связанная со скоростью;
 - 2) реостатное;
 - 3) торможения связанная с пусковым моментом;
 - 4) кинематическое торможение.
- 38. Электродвигатель предназначен для...
 - 1) преобразования механической энергии в электрическую;
 - 2) изменения параметров электрической энергии;
 - 3) преобразования электрической энергии в механическую;
 - 4) повышения коэффициента мощности линий электропередачи.
- 39. В электроприводах используют двигатели...
 - 1) только постоянного тока;
 - 2) только переменного тока:
 - 3) постоянного и переменного тока;
 - 4) внутреннего сгорания.
- 40. Преобразователь в электроприводе предназначен для...
 - 1) преобразования электрической энергии в механическую;
 - 2) преобразования параметров электрической энергии (тока, напряжения, частоты);
 - 3) преобразования механической энергии в магнитную;
 - 4) преобразования механической энергии в электрическую.
- 41. Управляющему устройству электропривода не свойственна следующая функция...
 - 1) включение и выключение электропривода;
 - 2) реверсирование электропривода;
 - 3) регулирование скорости электропривода;
 - 4) передача механической энергии рабочей машине.
- 42. В качестве преобразователя в электроприводах используют...
 - 1) автотрансформаторы;
 - 2) частотные преобразователи;

- 3) тиристорные преобразователи напряжения;
- 4) все выше перечисленные ответы.
- 43. Передаточное устройство предназначено для...
 - 1) передачи механической энергии от электродвигательного устройства к исполнительным органам рабочей машины;
 - 2) передачи сигналов обратной связи;
 - 3) передачи электрической энергии в электродвигателю;
 - 4) передачи электрической энергии к управляющему устройству.
- 44. Подъёмные механизмы имеют механическую характеристику...
 - 1) линейно возрастающую;
 - 2) не зависящую от скорости;
 - 3) нелинейно возрастающую;
 - 4) нелинейно падающую.
- 45. Момент, развиваемый электродвигателем, принимается положительным, если он направлен...
 - 1) по касательной к окружности, описываемой ротором электродвигателя;
 - 2) в сторону, обратную движению электропривода;
 - 3) по оси вращения ротора электродвигателя;
 - 4) в сторону движения электропривода.
- 46. Режим электродвигателя, при котором создаваемый им момент противодействует движению рабочей машины называется...
 - 1) тормозным;
 - 2) противодействующим;
 - 3) обратным;
 - 4) холостым ходом.
- 47. Ток возбуждения двигателя постоянного тока регулируется...
 - 1) с помощью батарей конденсаторов;
 - 2) помощью частотных преобразователей;
 - 3) с помощью реостатов или регуляторов напряжения;
 - 4) с помощью дросселей.
- 48. К способам регулирования скорости асинхронного двигателя не относится...
 - 1) изменение напряжения;
 - 2) смена числа пар полюсов;
 - 3) реостатное регулирование;
 - 4) смена полярности на обмотке якоря.

- 49. Синхронная скорость (об/мин) магнитного поля обмотки статора асинхронного двигателя имеет максимальное значение не выше...
 - 1) 1500;
 - 2) 3000;
 - 3) 1000;
 - 4) 750.

Б1.В.11 Электрические аппараты

- 50. Предохранитель предназначен:
 - 1) для защиты от токов перегрузки;
 - 2) для защиты от токов К.З. и перегрузок;
 - 3) для защиты от всех аварийных режимов;
 - 4) нет правильного ответа.
- 51. Автоматический выключатель состоит из:
 - 1) корпуса, плавкой вставки, наполнителя;
 - 2) корпуса, контактов, привода, расцепителя;
 - 3) корпуса, контактов, электромагнитного привода;
 - 4) корпуса, контактов, расцепителя, механизма свободного расцепления.
- 52. Тепловое реле состоит из:
 - 1) корпуса, плавкой вставки, наполнителя;
 - 2) биметаллическая пластины, корпуса, контактов;
 - 3) корпуса, контактов, электромагнитного привода;
 - 4) биметаллической пластины, контактов, привода.
- 53. Предохранитель как правило состоит из:
 - 1) корпуса, плавкой вставки, наполнителя;
 - 2) корпуса, контактов, расцепителя;
 - 3) корпуса, контактов, электромагнитного привода;
 - 4) нет правильного ответа.
- 54. Отличие пакетного выключателя от переключателя:
 - 1) наличие дугогасительного устройства;
 - 2) возможность мгновенного отключения;
 - 3) числом переключений;
 - 4) регулированием параметров.
- 55. Преимущество автоматического выключателя перед предохранителем:
 - 1) простота конструкции;
 - габариты;
 - 3) надежность защиты;
 - 4) величина силы тока.

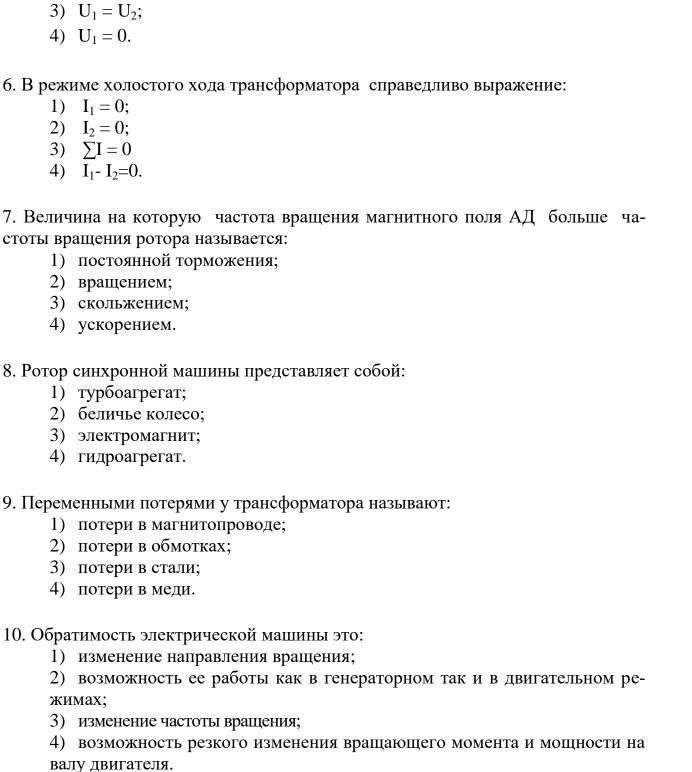
1)	по току расцепителя;
2)	по конструкции корпуса;
	по размерам;
4)	по току плавкой вставки;
57. Конт	актор со встроенным тепловым реле это:
1)	пускатель;
2)	автомат;
3)	предохранитель;
4)	рубильник.
	мутационный аппарат, служащий для автоматического отделения по- ного оборудования от электрической сети после снятия напряжения, сся:
1)	предохранитель;
2)	автомат;
3)	отделитель;
4)	рубильник.
59. Элек	трический аппарат, искровые промежутки которых пробиваются при
	енном значении приложенного напряжения, называется:
определе	
определе 1)	енном значении приложенного напряжения, называется:
определе 1) 2)	енном значении приложенного напряжения, называется: отделитель;
определе 1) 2) 3)	енном значении приложенного напряжения, называется: отделитель; разрядник;
определе 1) 2) 3) 4)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель;
определе 1) 2) 3) 4) 60. Отно	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник.
определе 1) 2) 3) 4) 60. Отно 1)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник. шение тока отпускания к току срабатывания называется:
определе 1) 2) 3) 4) 60. Отно 1) 2)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник. шение тока отпускания к току срабатывания называется: коэффициент возврата;
определе 1) 2) 3) 4) 60. Отно 1) 2)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник. шение тока отпускания к току срабатывания называется: коэффициент возврата; коэффициент отсечки;
определе 1) 2) 3) 4) 60. Отно 1) 2) 3)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник. шение тока отпускания к току срабатывания называется: коэффициент возврата; коэффициент отсечки; коэффициент дребезга;
определе 1) 2) 3) 4) 60. Отно 1) 2) 3) 4)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник. шение тока отпускания к току срабатывания называется: коэффициент возврата; коэффициент отсечки; коэффициент дребезга;
определе 1) 2) 3) 4) 60. Отно 1) 2) 3) 4)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник. шение тока отпускания к току срабатывания называется: коэффициент возврата; коэффициент отсечки; коэффициент дребезга; коэффициент срабатывания. проводниковый прибор, служащий для усиления электрических сигна-
определе 1) 2) 3) 4) 60. Отно 1) 2) 3) 4)	енном значении приложенного напряжения, называется: отделитель; разрядник; предохранитель; рубильник. шение тока отпускания к току срабатывания называется: коэффициент возврата; коэффициент отсечки; коэффициент дребезга; коэффициент срабатывания. проводниковый прибор, служащий для усиления электрических сигна-

56. Предохранители выбирают:

3) транзистор;4) стабилитрон

транзистор;
 тиристор;

3) диод;


62. Управляемый четырехслойный вентиль называется:

- 4) стабилитрон.
- 63. Выключатель электрической цепи с ручным приводом называется:
 - 1) отделитель;
 - 2) автомат;
 - 3) предохранитель;
 - 4) рубильник.

Вариант 3

Б1.В.7 Электрические машины

- 1. Электрические машины состоят из:
 - 1) вращающейся и подвижной части;
 - 2) скользящей части и не подвижной;
 - 3) вращающейся и скользящей части;
 - 4) не подвижной и вращающейся части.
- 2. Выводы начала обмоток трансформатора на стороне низшего напряжения обозначают:
 - 1) A, B, C;
 - 2) x, y, z;
 - 3) a, B, c;
 - 4) X, Y, Z.
- 3. Начало фазных обмоток АД обозначают:
 - 1) $C_4, C_5, C_6;$
 - 2) A, B, C;
 - 3) a, B, c;
 - 4) C_1, C_2, C_3 .
- 4. Коэффициент трансформации (К) равен:
 - $1) \quad \frac{U_{\rm\scriptscriptstyle GH}}{U_{\rm\scriptscriptstyle HH}} > 1;$
 - 2) $\frac{I_2}{I_1} > 1$;
 - 3) $\frac{P_1}{P_2} > 1$;
 - 4) U = const. > 1.
- 5. Режиму повышающего трансформатора соответствует выражение:

11. Полый цилиндр электрической машины, собранный из изолированных кли-

нообразных медных пластин называется:

статор;
 щетки;

3) сердечник;4) коллектор.

U₁ > U₂;
 U₁ < U₂;

- 12. Реверсирование это:
 - 1) изменение частоты напряжения;
 - 2) изменение частоты вращения;
 - 3) изменение направления вращения;
 - 4) изменением принципа действия.
- 13. Обмотка трансформатора, к которой подключен приёмник электроэнергии называется:
 - 1) вторичной;
 - 2) первичной;
 - 3) постоянного тока;
 - 4) возбуждения.
- 14. При включении трансформатора в цепь постоянного тока:
 - 1) он уменьшит потребляемый ток из сети;
 - 2) он увеличит мощность;
 - 3) ничего не изменится;
 - 4) он выйдет из строя.
- 15. Часть машины, в обмотке которой при вращении магнитного поля индуцируется ЭДС:
 - 1) ярмо;
 - 2) беличье колесо;
 - 3) ротор;
 - 4) сердечник.
- 16. В генераторе щетки и коллектор необходимы:
 - 1) для магнитной проводимости;
 - 2) для периода коммутации;
 - 3) для выпрямления переменной ЭДС;
 - 4) для механического насыщения.
 - Б1.В.14 Электромагнитная совместимость в электроэнергетике
- 17. Грозовой разряд, разряды статического электричества, технические электромагнитные процессы, ядерный взрыв это источники помех:
 - 1) естественные;
 - 2) искусственные;
 - 3) внешние;
 - 4) внутренние.
- 18. Устройство, используемое для уменьшения электромагнитного поля, проникающего в защищаемую область:
 - 1) заземление;

- 2) экран;3) электромагнитное возмущение;4) приемник.Измерение токовых помех исходящих и:
- 19. Измерение токовых помех исходящих от объекта, осуществляется при помощи:
 - 1) генератора тока;
 - 2) трансформатора тока;
 - 3) трансформатора напряжения;
 - 4) силового трансформатора.
- 20. Наиболее сильные радиопомехи и акустический шум возникают:
 - 1) при коронировании линий сверхвысокого напряжения в ясную погоду;
 - 2) при коронировании линий среднего напряжения;
 - 3) при коронировании линий сверхвысокого напряжения во время дождя и снега;
 - 4) нет верного ответа.
- 21. Число составляющих проводов расщепленной фазы:
 - 1) снижает радиопомехи;
 - 2) увеличивает радиопомехи;
 - 3) практически не влияет на радиопомехи;
 - 4) нет верного ответа.
- 22. Источником помех на объектах в электроэнергетике является переходные процессы являющиеся следствием разрядов:
 - 1) зарядов;
 - 2) молнии;
 - 3) конденсатор;
 - 4) электричество.
- 23. Пребывание человека в электрическом поле без применения средств защиты не допускается, начиная с напряженности:
 - 1) 35 kB/m;
 - 2) 20 kB/m;
 - 3) 25 kB/m;
 - 4) 15 κB/м.
- 24. В середине пролета напряженность электрического поля под ЛЭП:

- 1) такая же, как и у опор;
- 2) наименьшая или такая же, как и у опор;
- 3) наибольшая;
- 4) наименьшая.
- 25. Влияние ВЛЭП на линии связи через гальваническую связь (полное сопротивление связи) обусловлено:
 - 1) протеканием в земле силовых токов;
 - 2) наличием вокруг проводной ВЛ электрического поля;
 - 3) прохождением части или всего переменного тока ВЛ по цепи проводземля;
 - 4) нет верного ответа.
- 26. Сетевой фильтр свободно пропускает:
 - 1) высокие частоты;
 - 2) низкие частоты;
 - 3) импульсные сигналы;
 - 4) аналоговые сигналы.
- 27. Рабочие токи и напряжения в сигнальных цепях и линиях передачи данных:
 - 1) имеют низкую частоту;
 - 2) имеют высокую частоту;
 - 3) могут иметь широкий спектр частот;
 - 4) имеют сверхнизкую частоту.
- 28. Основными элементами пассивных фильтров являются:
 - 1) катушки индуктивности и конденсаторы;
 - 2) сопротивления и диоды;
 - 3) предохранители и сопротивления;
 - 4) диоды, сопротивления и катушки индуктивности.
- 29. Эффект ограничения напряжения варисторами основан на том, что при превышении рабочего напряжения:
 - 1) его сопротивление увеличивается на много порядков;
 - 2) его сопротивление уменьшается на много порядков;
 - 3) его индуктивность увеличивается на много порядков;
 - 4) нет верного ответа.
- 30. Если сопротивления источника и приемника помех велики, то рекомендуется использовать:
 - 1) нет верного ответа;
 - 2) индуктивный фильтр;
 - 3) индуктивно-емкостной фильтр;
 - 4) емкостной фильтр.

- 31. Влияют ли геометрические параметры соединительных проводников на гальваническую связь?
 - 1) да;
 - нет;
 - 3) в конкретных случаях;
 - 4) нет верного ответа.
- 32. Применение световодов для передачи сигналов приводит с точки зрения емкостного влияния к тому, что помехи:
 - 1) возрастают;
 - 2) остаются неизменными;
 - 3) уменьшаются;
 - 4) уменьшаются или остаются неизменными.

Б1.Б.24 Основы электропривода

- 33. Магнитное поле возбуждается:
 - 1) только катушкой с током;
 - 2) магнитом или катушкой с током;
 - 3) только магнитом;
 - 4) генератором;
- 34. Регулирование скорости введением активного сопротивления в цепь ротора асинхронного двигателя:
 - 1) не возможно;
 - 2) возможно только для асинхронного двигателя с фазным ротором;
 - 3) возможно для всех асинхронных двигателей;
 - 4) возможно только для асинхронных двигателей с короткозамкнутым ротором.
- 35. Если момент электродвигателя больше момента сопротивления рабочей машины, то имеет место:
 - 1) замедление электропривода;
 - 2) работа в установившемся режиме;
 - 3) ускорение электропривода;
 - 4) реверсирование электропривода.
- 36. Скольжение асинхронного двигателя это:
 - 1) амплитуда колебания электродвигателя при неполной затяжке лап статора;
 - 2) мера того, насколько ротор опережает в своем вращении магнитное поле статора;

- 3) контактное сопротивление, образующееся при скольжении щёток по контактным кольцам;
- 4) мера того, насколько ротор отстает в своем вращении от вращения магнитного поля статора.
- 37. Электропривод состоит из каких основных частей, как:
 - 1) система регулирования;
 - 2) силовая часть и система управления;
 - 3) механическая и динамическая;
 - 4) система устойчивости.
- 38. Одним из основных номинальных режимов работы электропривода не является:
 - 1) продолжительный;
 - 2) кратковременный;
 - 3) повторно-кратковременный;
 - 4) повторно-кратковременный с пусками.
- 39. В электроприводах используют двигатели:
 - 1) только постоянного тока;
 - 2) только переменного тока:
 - 3) постоянного и переменного тока;
 - 4) внутреннего сгорания.
- 40. Включение добавочного сопротивления в цепь ротора асинхронного двигателя:
 - 1) возможно для двигателя с короткозамкнутым ротором;
 - 2) возможно для двигателей с короткозамкнутым и фазным ротором;
 - 3) невозможно;
 - 4) возможно для двигателя с фазным ротором.
- 41. Режим работы электродвигателя при неизменной нагрузке, продолжающийся столько времени, что превышение температуры всех частей двигателя достигает установившихся значений называется:
 - 1) кратковременный;
 - 2) повторно-кратковременный;
 - 3) продолжительный;
 - 4) повторно-кратковременный с пусками.
- 42. Передаточное устройство в электроприводе предназначено для:
 - 1) передачи механической энергии от электродвигательного устройства к исполнительным органам рабочей машины;
 - 2) передачи сигналов обратной связи;
 - 3) передачи электрической энергии к электродвигателю;

- 4) передачи электрической энергии к управляющему устройству.
- 43. К способам регулирования скорости асинхронного двигателя не относится:
 - 1) изменение напряжения;
 - 2) смена числа пар полюсов;
 - 3) реостатное регулирование;
 - 4) смена полярности на обмотке якоря.
- 44. Система устройств, для приведения в движение исполнительных органов работы машины с помощью электрической энергии называется:
 - 1) механический привод;
 - 2) электропривод;
 - 3) гидропривод;
 - 4) ручной привод.
- 45. Длительность работы электропривода и ее характер определяют:
 - 1) продолжительность ремонта;
 - 2) период коммутации;
 - 3) рабочий режим привода;
 - 4) коэффициент затухания.
- 46. ПВ% это:
 - 1) процент быстроты включения;
 - 2) процент быстроты выключения;
 - 3) процент периода вращения;
 - 4) процент продолжительности включения.
- 47. Для приведения в соответствие вида тока сети и электрического двигателя применяют:
 - 1) преобразователь частоты;
 - 2) выпрямитель;
 - 3) трансформатор;
 - 4) делитель напряжения.

Б1.В.11 Электрические аппараты

- 48. Время удара подвижных контактов о неподвижные называется
 - 1) время отпускания;
 - 2) время срабатывания;
 - 3) время отсечки;
 - 4) время дребезга.
- 49. Электрический контакт, который при отсутствии напряжения в цепи управляющей катушки или отсутствии механического воздействия на него является замкнутым, называется

- 1) размыкающим;
- 2) замыкающим;
- 3) переключающим;
- 4) выключающим.
- 50. Явление, которое не используют для гашения дуги, называется
 - 1) увеличение длины дуги;
 - 2) воздействие на ствол дуги путём нагревания;
 - 3) воздействие на ствол дуги путём охлаждения;
 - 4) околоэлектродное падение напряжения.
- 51. Коммутационный аппарат однократного действия, предназначенный для защиты оборудования от токов превышающих допустимые величины для данного оборудования, называется
 - 1) отделитель;
 - автомат;
 - 3) предохранитель;
 - 4) рубильник.
- 52. Электрический контакт, который при отсутствии напряжения в цепи управляющей катушки или механического воздействия остается разомкнутым, называется
 - 1) размыкающим;
 - 2) замыкающим;
 - 3) переключающим;
 - 4) выключающим.
- 53. Способность реле срабатывать при определённом значении мощности, подаваемой на его обмотку, называется
 - 1) надежность;
 - 2) быстродействие;
 - 3) чувствительность;
 - 4) работоспособность.
- 54. Полупроводниковый прибор, служащий для усиления электрических сигналов, называется
 - 1) диод;
 - 2) транзистор;
 - 3) тиристор;
 - 4) стабилитрон.
- 55. Электрический аппарат это:
 - 1) электротехническое устройство, которое используется для включения и отключения электрических цепей;

- 2) электротехническое устройство, которое используется для включения и отключения электрических цепей, контроля, измерения, защиты, управления регулирования установок предназначенных для передачи, преобразования, распределения и потребления электроэнергии;
- 3) электрическая машина которая служит для преобразования электрической энергии в механическую;
- 4) электротехническое устройство, которое используется для включения и отключения электрических цепей, контроля.

56. Признаки классификаций электрических аппаратов:

- 1) цена;
- 2) внешний вид;
- 3) назначение;
- 4) род тока.

57. Какой аппарат не защищает сеть от перегрузок:

- 1) автомат с тепловым расцепителем;
- 2) автомат с электромагнитным расцепителем;
- 3) предохранитель;
- 4) автомат с комбинированным расцепителем.

58. Для отключения токов КЗ используют:

- 1) отделитель;
- 2) разъединитель;
- 3) выключатель вакуумный;
- 4) короткозамыкатель.

59. Предохранитель как правило состоит из:

- 1) корпуса, плавкой вставки, наполнителя;
- 2) корпуса, контактов, расцепителя;
- 3) корпуса, контактов, электромагнитного привода;
- 4) нет правильного ответа.

60. Отличие пакетного выключателя от переключателя:

- 1) наличие дугогасительного устройства;
- 2) возможность мгновенного отключения;
- 3) числом переключений;
- 4) регулированием параметров.

61. Преимущество автоматического выключателя перед предохранителем:

- 1) простота конструкции;
- 2) надежность защиты;

- 3) габариты;
- 4) величина силы тока.
- 62. Предохранители выбирают:
 - 1) по току расцепителя;
 - 2) по конструкции корпуса;
 - 3) по размерам;
 - 4) по току плавкой вставки;
- 63. Отношение тока отпускания к току срабатывания называется
 - 1) коэффициент отсечки;
 - 2) коэффициент возврата;
 - 3) коэффициент дребезга;
 - 4) коэффициент срабатывания.

Критерии оценивания

Обучающийся по данному тестированию может набрать максимальное количество баллов — 63. Тест содержит 63 вопроса. Стоимость одного вопроса — 1 балл.

Баллы рейтинга для теста переводятся в пятибалльную систему по следующей шкале:

```
57-63 баллов - «отлично»;
```

- 47-56 баллов «хорошо»;
- 39-46 баллов «удовлетворительно»;
- 38 баллов и менее «неудовлетворительно».

Ключ ответов к варианту 1

Б1 В 7 Эпектрические машины

Б1.В./ Электрические машины		
Правильный ответ		
4		
2		
3		
2		
3		
4		
4		
2		
4		
3		
3		
3		
1		
2		
2		
3		
3		

Б1.Б.24 Основы электропривода

Harran parawar	1 1 .
Номер задания	Правильный ответ
34	2
35	3
36	1,3
37	4
38	2
39	2
40	4
41	1
42	1
43	1,2
44	3
45	2
46	2
47	4
48	3

Б1.В.14 Электромагнитная совместимость в электроэнергетике Б1.В.11 Электрические аппараты

U
ьный ответ
1
2
2
3
1
2
1
1
2
1
1
2
4
1
2
3

TT UT U		
Номер задания	Правильный ответ	
49	1	
50	3,5	
51	2	
52	3	
53	2	
54	3	
55	2	
56	2	
57	3	
58	3	
59	1	
60	3	
61	3	
62	3	
63	3	
·		

Б1.В.11 Электрические машины

	Пестис машины
Номер задания	Правильный ответ
1	1
2	3
3	4
4	2
5	3 3
6	
7	2
8	4
9	4
10	3
11	3
12	3
13	3
14	1
15	3
16	4

Б1.В.14 Электромагнитная совместимость в лектроэнергетике

connectamoeth b hertpostieptetake		
Номер задания	Правильный ответ	
17	3	
18	2 4	
19		
20	2	
21	2 2 3	
22	3	
23	1	
24	2	
25	1	
26	2	
27	4	
28	1	
29	3	
30	3	
31	1	
32	3	
33	4	
34	2	
35	1	

Б1.Б.24 Основы электропривод

Номер задания	Правильный ответ
36	1
37	2
38	3
39	3
40	2
41	4
42	4
43	1
44	2
45	4
46	1
47	3
48	4
49	2

Б1.В.11 Электрические аппараты

Номер задания	Правильный ответ
50	2
51	4
52	2
53	1
54	3
55	3
56	4
57	1
58	3
59	2
60	1
61	3
62	2
63	4

Ключ ответов к варианту 3

Б1.В.7 Электрические машины

BI:B: / SHERIPH	
Номер задания	Правильный ответ
1	4
2	3
3	4
4	1
5	1
6	2
7	3
8	3
9	2,4
10	2,4
11	4
12	3
13	1
14	4
15	3 3
16	3

Б1.Б.24 Основы электропривода

Номер задания	Правильный ответ
33	2
34	2
35	3
36	4
37	2
38	4
39	3
40	4
41	3
42	1
43	4
44	2
45	3
46	4
47	2

Б1.В.14 Электромагнитная совместимость в лектроэнергетике

совместимость в лектроэнергетике	
Номер задания	Правильный ответ
17	3
18	2
19	2
20	3
21	3
22	2
23	3
24	3
25	1
26	2
27	1
28	1
29	2
30	4
31	1
32	3

Б1.В.11 Электрические аппараты

Номер задания	Правильный ответ
48	4
49	1
50	2
51	3
52	2
53	3
54	2
55	2
56	3,4
57	2
58	3
59	1
60	3
61	2
62	4
63	2