

Моделирование вызванных вихрями вибраций (VIV) твёрдых структур методом вейк-осциллятора

Тема НИОКР: Рациональное природопользование

В.А. КУРУШИНА

Введение

Вызванные вихрями вибрации (vortex-induced vibrations, VIVs) возникают при взаимодействии удлиннённой структуры (твёрдого/гибкого тела) с потоком жидкости, которое приводит к образованию вихревой дорожки ниже по течению (Karman vortex street). Перепады давления в жидкости, обтекающей тело, выражаются в колебаниях жидкостных сил (lift and drag forces), что создаёт увеличение нагрузки на структуру и может уменьшить срок её использования. Данная проблема актуальна для подводных объектов по добыче нефти и газа.

Примеры удлиннённых структур, подверженных VIV:

- райзеры (трубопроводы, поднимающие нефть и газ с морского дна на платформу);
- ▶ переходы подводных трубопроводов;
- > шлангокабели;
- > антенны;
- > линии электропередач;
- ➤ небоскрёбы;
- ➤ подвесные мосты и т.д.

Общая информация

Название
проекта

Моделирование вызванных вихрями вибраций (VIV) твёрдых структур методом вейк-осциллятора

Тема НИОКР Рациональное природопользование

Аннотация

Вызванные вихрями вибрации (VIV) в условиях подводных систем, добывающих нефть и газ, развиваются в условиях неравномерного потока, где скорость течения варьируется по длине тонкой структуры и меняет направление. Данные вибрации создают дополнительную нагрузку на тонкие структуры, такие как райзеры и шлангокабели, и могут значительно уменьшить срок их использования. Развитие VIV зависит от большого количества параметров случая, и существующие в настоящее время модели не позволяют получить точные предсказания перемещений и действующих сил либо требуют значительного времени для расчётов.

В данном проекте планируется сфокусироваться на совершенствовании моделей для предсказания вибраций твёрдых структур в равномерном потоке. Моделирование выполняется методом вейк-осциллятора, который подразумевает калибровку эмпирических коэффициентов с привлечением экспериментальных данных, доступных в литературе. Предполагаемым результатом исследования является набор откалиброванных моделей для предсказания вибраций в определённом диапазоне структурных параметров. Результаты планируется представить в виде 1 статьи и направить в журналы, индексируемые в Scopus/WoS.

Успешное выполнение данного исследования может стать основой для создания в будущем программного обеспечения для предсказания VIV, используя метод вейк-осциллятора. В перспективе, модели типа вейк-осциллятор могут составить конкуренцию существующим кодам, таким как Orcaflex и Shear7, которые доминируют в настоящее время в практике дизайна удлиннённых структур для объектов в Северном море и Мексиканском заливе.

Продолжительность

11 месяцев

Актуальность проведения НИОКР и реализации проекта в целом

- Снижение аварийности эксплуатации подводных добывающих систем.
- Разработка моделей типа вейк-осциллятора может послужить основой для разработки в будущем отечественных аналогов таких кодов в области прогнозирования VIV, как Orcaflex и Shear7, которые доминируют в настоящее время в практике дизайна удлиннённых структур для объектов в Северном море и Мексиканском заливе.

University Towercori Towercori

Цель НИОКР

Разработать модели VIV с точно определёнными границами применения в равномерном потоке, используя метод вейк-осциллятора.

Задачи:

- 1. Поиск и изучение экспериментальных данных, доступных в литературе для возможной группировки состояний синхронизации по массовому соотношению, соотношению демпфирования и числу Рейнольдса.
- 2. Изучение достоинств и недостатков уже существующих моделей гибких структур, разработанных в рамках метода вейк-осциллятора.
- 3. Калибровка эмпирических коэффициентов.
- 4. Оценка точности предсказания модели (моделей) и поиск путей её улучшения.
- 5. Изучение динамики и свойств моделей.
- 6. Подготовка научной статьи по VIV в равномерном потоке.

Календарный план (дорожная карта) выполнения НИОКР

№ п/п	Наименование этапа работ		Окончание (дд.мм.гг.)	Вид документа и результат	Показатели ПРОУ, на которые оказывает влияние результат	Сумма затрат, руб.
1.	Подготовка литературного обзора	14.01.2019	28.02.2019			
1.1.	Поиск и изучение опубликованных экспериментальных данных для твёрдых структур в равномерном потоке		28.02.2019	Отчёт о результатах литературного обзора	Объём НИОКР в расчёте на 1 НПР	69 818,5
1.2.	Подготовка обзора существующих моделей твёрдых структур в равномерном потоке	01.02.2019	28.02.2019			
2.	Проведение расчётов	01.03.2019	14.09.2019			
2.1.	. Калибровка эмпирических коэффициентов		01.06.2019			
2.2.	Обработка результатов калибровки		01.07.2019	Отчёт о результатах	Объём НИОКР в расчёте	461 373,5
2.3.	Сравнение с опубликованными экспериментальными данными		01.08.2019	проведения расчётов	на 1 НПР	
2.4.	. Изучение свойств откалиброванных моделей		14.09.2019			
2.5.	Зарубежная командировка на международную конференцию / симпозиум по узкоспециализирован-ной тематике проекта	06.05.2019	12.05.2019			
3.	Подготовка 1 статьи по материалам исследования	15.09.2019	14.12.2019	Подготовка	Количество публикаций, индексируемых в информационно-	
3.1	Подготовка графического материала по результатам исследования	15.09.2019	14.10.2019		аналитической системе научного	134 757
3.2.	Подготовка текстового материала статьи по результатам исследования совместно с зарубежными учёными	15.10.2019	14.12.2019	индексируемый в базах дитирования Scopus / Web of Scient данных Scopus / WoS в расчете на 100 НПР за текущий / ед.		

Итого: 665 949 руб. 00 коп.

University Томенский индустриальный университет

Ожидаемые результаты

Основные результаты:

- 1. Группа моделей для предсказания VIV с достаточно точно определёнными границами применения.
- 2. Научная статья, в соавторстве с учеными из группы CADR Университета Абердина, готовая к подаче в журналы, индексируемые в Scopus/WoS.

Сопутствующие результаты:

- 3. Проектно-ориентированное обучение для магистрантов/бакалавров, участвующих в проведении исследования.
- 4. Возможности использования результатов исследования при преподавании специальных дисциплин по направлению «Нефтегазовое дело» и «Морское бурение».
- 5. Укрепление сотрудничества с группой CADR Университета Абердина.

Временный научный коллектив (ВНК)

№	ФИО	Учёная степень	Возраст	Должность и место работы	Опыт и компетенции по тематике проекта
1.	Курушина Виктория Александровна	PhD in Engineering	30	Доцент кафедры ТУР	 4 года научной работы в рамках исследовательской PhD опыт программирования в среде Matlab, опыт вычислений на компьютерном кластере, апробирование результатов исследований на 4 международных конференциях, 1 статья в журнале с импакт-фактором 2,8 (из 3 статей по тематике проекта)
2.	Соколов Евгений Николаевич	Бакалавр	22	Магистрант, гр. УСТм-18	
3.	Николаев Александр Андреевич	Бакалавр	21	Магистрант гр. УСТм-18	 способность к самообучению, способность проводить анализ и систематизацию научнотехнической информации,
4.	Таужиянская Мария Дмитриевна	-	23	Бакалавр, гр. ГНГ-16-1	• способность осуществлять выбор средств решения задачи

Обучение ВНК

- 1. Критический обзор литературы по тематике исследования.
- 2. Курс основ текстового редактора LaTeX для написания профессиональных научных статей.
- 3. Курс основ Matlab, необходимых для того, чтобы начать свои научные расчёты, не имея предыдущего опыта.
- 4. Структурирование научной статьи.

Перспективы продолжения исследования

- 1. Рассмотрение вибраций для гибкой структуры в равномерном потоке.
- 2. Рассмотрение различных профилей скорости течения.
- 3. Рассмотрение пульсаций внутреннего потока совместно с VIV.
- 4. Создание программного обеспечения, которое может составить конкуренцию существующим кодам, таким как Orcaflex или Shear7, в области прогнозирования VIV.

9

Ф.И.О.	Учёная степень	Возраст	Должность и место работы или учёбы	Опыт по тематике проекта
Курушина Виктория Александровна	PhD in Engineering	30 лет	Доцент кафедры транспорта углеводородных ресурсов	Проект является продолжением исследования, проведённого в Ph.D. аспирантуре Центра исследований по прикладной динамике Университета Абердина, Абердин, Великобритания

Ключевые статьи:

- ✓ Kurushina V., Pavlovskaia E., Postnikov A., Wiercigroch M. Calibration and comparison of VIV wake oscillator models for low mass ratio structures / International Journal of Mechanical Sciences, 142-143, pp. 547-560.
- ✓ Kurushina V., Pavlovskaia E. Fluid nonlinearities effect on wake oscillator model performance / MATEC Web of Conferences, 148, 04002.
- ✓ Kurushina V., Pavlovskaia E. Wake oscillator equations in modelling vortex-induced vibrations at low mass ratios / OCEANS Aberdeen 2017-October, pp. 1-6.

Доклады на международных конференциях:

- ✓Доклад *«Calibrated model of flexible structure VIVs»*, конференция «10th European Solid Mechanics Conference», Болонья, Италия (июнь, 2018);
- ✓ Доклад «Nonlinear damping types in wake oscillator model for vortexinduced vibrations of 2DOF rigid structure», конференция «9th European Nonlinear Dynamics Conference», Будапешт, Венгрия (июнь, 2017);
- ✓Доклад «Wake oscillator equations in modelling vortex-induced vibrations at low mass ratio», конференция «ОСЕАNS 2017 MTS/IEEE Aberdeen», Абердин, Соединённое Королевство (июнь, 2017);
- ✓Доклад «Modelling of vortex-induced vibrations on flexible structures using wake oscillator approach», конференция «Advances in subsea engineering, structures and systems», Глазго, Соединённое Королевство (июнь, 2016).

10

Благодарю за внимание!

ПЕРВЫЙ ВУЗ КОРПОРАЦИЙ Курушина Виктория Александровна
PhD in Engineering
Доцент кафедры «Транспорт
углеводородных ресурсов»
v.kurushina@outlook.com
+79129245778

www.tyuiu.ru