МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Техническая механика дисциплины:

направление подготовки: 13.03.02 Электроэнергетика и электротехника

направленность: Электроснабжение

форма обучения: заочная Фонд оценочных средств разработан в соответствии с утвержденным учебным планом от 22.04.2019 г. и требованиями ОПОП ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника, направленность Электроснабжение, к результатам освоения дисциплины «Техническая механика».

Фонд оценочных средств рассмотрен на заседании кафедры Транспорта и технологий нефтегазового комплекса

Протокол \mathcal{N}_{2} 9 от «15» мая 2019 г.

Заведующий кафедрой ______ А.В.Козлов

Фонд оценочных средств разработал:

А.В.Козлов профессор кафедры ТТНК

1. Результаты обучения по дисциплине

Таблица 1.1

	T	таолица т.т
Код и наименование компетенции	Код и наименование индика- торов достижения компетен- ций (ИДК)	Результаты обучения по дисци- плине (модулю)
O.W. 5	07774.5.4	Знать (31): средства измерения, способы и методы измерения неэлектрических величин, методы обработки результатов измерений и оценки их погрешности
ОПК-5. Способен проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности	ОПК-5.1. Выбирает средства измерения, проводит измерения электрических и неэлектрических величин, обрабатывает результаты измерений и оценивает их погрешность.	Уметь (У1): выбирать средства измерения, проводить измерения неэлектрических величин, обрабатывать результаты измерений и оценивать их погрешность Владеть (В1): навыками выбора средств измерения, методами проведения измерений неэлектрических величин, способами обработки результатов измерений и оценки их погрешности

2. Формы аттестации по дисциплине

2.1. Форма аттестации: экзамен.

2.2. Формы текущей аттестации:

Таблица 2.1

No	Форма обучения
Π/Π	3ФО
1	Практические занятия
2	Контрольная работа
3	

3. Результаты обучения по дисциплине, подлежащие проверке при проведении текущей и промежуточной аттестации

Таблица 3.1

	Структурные элементы дисципли-		Vон ромин тото	Оценочные средства	
* ' '		ны/модуля Дидактические единицы (предметные темы)	Код результата обучения по дис- циплине/модулю	Текущая аттестация	Итоговая аттестация
		1. Теоретическая механика	ОПК-5.1.	Опрос, рас-	Экзамен,
1	1			четное заня-	тесты
				тие	
		2. Сопротивление материалов	ОПК-5.1.	Опрос, рас-	Экзамен,
2	2			четное заня-	тесты
				тие	
		3. Структурная классификация	ОПК-5.1.	Коллоквиум	Экзамен,
3	3	и виды механизмов.		расчетное	тесты
		4. Динамика механизмов. Ко-		занятие	
		лебания в механизмах			

4. Фонд оценочных средств

- 4.1. Фонд оценочных средств, позволяющие оценить результаты обучения по дисциплине, включает в себя оценочные средства для текущей аттестации и промежуточной аттестации.
- 4.2. Фонд оценочных средств для текущей аттестации включает:
 - вопросы к опросу по разделу «Теоретическая механика» 26 шт. (Приложение 1);
- вопросы к опросу по разделу «Сопротивление материалов» 22 шт. (Приложение 2).
- вопросы к коллоквиуму по разделу «Теория машин и механизмов» 26 шт. (Приложение 3).
- расчетные задания по разделам приведены в методических указаниях к практическим занятиям по дисциплине «Техническая механика»;
- задание к контрольной работе (методические указания к контрольной работе по дисциплине «Техническая механика»).
- 4.3. Фонд оценочных средств для промежуточной аттестации включает:
 - итоговый тест для промежуточной аттестации 100 шт., (Приложение 5).
 - вопросов к экзамену для промежуточной аттестации 42 шт., (Приложение 5).

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Опрос (письменный) 1

Перечень вопросов:

- 1. Задачи дисциплины. Основные понятия и определения.
- 2. Аксиомы статики.
- 3. Связи, их реакции.
- 4. Сложение сил.
- 5. Проекция силы на ось.
- 6. Аналитический способ задания и сложения сил.
- 7. Сходящаяся система сил.
- 8. Момент силы относительно точки.
- 9. Пара сил и ее свойства.
- 10. Плоская произвольная система сил.
- 11. Расчет составных конструкций.
- 12. Расчет ферм.
- 13. Сцепление и трение тел.
- 14. Центр тяжести.
- 15. Произвольная пространственная система сил.
- 16. Способы задания движения точки.
- 17. Определение траекторий, скоростей и ускорений точек при различных способах задания движения.
 - 18. Поступательное движение.
 - 19. Вращательное движение тела вокруг неподвижной оси.
 - 20. Плоско-параллельное движение.
 - 21. Характеристики механической системы.
 - 22. Теорема о движении центра масс.
- 23. Теорема об изменении главного вектора количества движения механической системы.
 - 24. Теорема об изменении кинетического момента механической системы.
 - 25. Теорема об изменении кинетической энергии системы.
 - 26. Закон сохранения механической энергии.

Критерии оценки:

Ответ опенивается 0-5 баллов

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Опрос (письменный) 2

Перечень вопросов:

- 1. Значение и задачи сопротивления материалов.
- 2. Виды деформаций стержня.
- 3. Понятие о деформированном состоянии материала.
- 4. Основные гипотезы и допущения.
- 5. Метод сечений.
- 6. Внутренние силы.
- 7. Эпюры внутренних сил.
- 8. Нормальные и касательные напряжения в сечении.
- 9. Напряжения и деформации при растяжении и сжатии.
- 10. Закон Гука.
- 11. Коэффициент Пуассона.
- 12. Расчеты на срез и смятие.
- 13. Геометрические характеристики сечений.
- 14. Построение эпюры крутящих моментов.
- 15. Касательные напряжения.
- 16. Угловые перемещения: угол закручивания сечения, относительный угол закручивания.
- 17. Построение эпюр изгибающих моментов и перерезывающих сил, дифференциальные зависимости при изгибе.
 - 18. Расчет нормальных и касательных напряжений при изгибе.
 - 19. Расчеты балок на прочность и жесткость при изгибе.
 - 20. Расчеты на срез.
 - 21. Чистый сдвиг.
 - 22. Напряженное состояние при чистом сдвиге.

Критерии оценки:

Ответ оценивается 0-5 баллов

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Теоретический письменный коллоквиум

Перечень вопросов:

- 1. Основные виды механизмов. Структурный анализ и синтез механизмов.
- 2. Кинематические цепи.
- 3. Виды механизмов и их структурные схемы.
- 4. Основные понятия кинематики механизмов.
- 5. Кинематический анализ и синтез рычажных механизмов.
- **6.** Построение положений механизма, синтез стержневых механизмов по заданным кинематическим свойствам.
 - 7. Диаграммы перемещений, скоростей и ускорений.
 - 8. Кинематический анализ зубчатых механизмов. Условия прочности и жесткости.
 - 9. Расчет валов на прочность и жесткость при кручении.
 - 10. Основные понятия динамики механизмов.
 - 11. Режимы движения механизмов.
 - 12. Кинетостатический расчет механизмов.
 - 13. Трение и коэффициент полезного действия механизмов.
 - 14. Определение уравновешивающей силы на кривошипе. Метод Жуковского.
 - 15. Определение реакций в кинематических парах.
 - 16. Уравновешивание механизмов с помощью маховика, противовесов.
 - 17. Уравновешивание роторов.
 - 18. Динамическое уравновешивание механизмов.
 - 19. Выбор типа привода механизма.
 - 20. Электропривод. Гидропривод. Пневмопривод.
 - 21. Линейные и нелинейные уравнения движения механизмов.
 - 22. Вибрация. Виброактивность машин.
 - 23. Виброзащита.
 - 24. Гашение колебаний, виброгасители.
 - 25. Вибрационные транспортеры.
 - 26. Динамика приводов (электропривод, гидропривод, пневмопривод).

Критерии оценки:

При оценке знаний обучающиеся получают два вопроса из выше представленного списка и письменно отвечают на них.

Вопрос/Ответ	Ответ полный	Ответ неполный	Ответ отсутствует	
письменный коллоквиум				
2 вопроса	10	1-9	0	
Итого:	10	1-9	0	

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Итоговый тест к промежуточной аттестации
1. Диск радиуса 2 м вращается против часовой стрелки вокруг оси, проходящей через его центр и перпендикулярной плоскости диска. Угловая скорость диска $\omega=3$ pad/c . По ободу диска по часовой стрелке движется точка со скоростью 3 м/с. Относительное ускорение точки (M/c^2) численно равно: A)4,5; + B) 18; B) 0.
2. Точка массой 0.5 кг движется из состояния покоя по прямой под действием движущей силы F1=2.5 H и силы сопротивления F2=0.5 H. Начальное положение точки хо=1 м. Координата х (м) в момент времени t=1 с равна: A) 3 ; + 5) 4 ; B) 5 .
3. Точка движется по окружности радиуса 5 м с постоянной скоростью 5 м/с. Её касательное ускорение $({\it M/c}^2)$ равно: A) 0; + Б) 25; B) 125.
4. Точка движется по прямой по закону: $x=t^4+3t^2+1$. Ускорение $(\mathit{M/c^2})$ в момент времени 1 с равно: A) 12; Б) 18; + B) 5.
$\omega = V/R$; $\varepsilon = d\omega/dt = d^2\varphi/dt^2$:

6. Для какого способа задания движения точки необходимо знать заранее всю траек-

А) поступательное движение; Б) колебательное движение; В) вращательное движение? +

А) векторный;

торию?

- Б) координатный;
- В) естественный.+
- 7. Динамика это раздел механики, который изучает:
- А) равновесие тел под действием сил;
- Б) движение тел под действием сил;+
- В) движение тел без учета действия сил.
- 8. Точка массой 2 кг движется по прямой под действием силы $F=24t^2$. Начальная скорость $V_o=3$ м/с, начальное положение точки $x_o=1$ м. Координата x (м) в момент времени t=1 с равна:
 - A) 24;
 - Б) 5; +
 - B) 7.
- 9. Диск массой 1 кг с радиусом 2 м вращается вокруг оси симметрии, проходящей через центр, по закону ϕ =t. Кинетический момент тела относительно оси вращения $\left(\kappa z * {\it M}^2/c\right)$ равен:
 - A) 2; +
 - Б) 1;
 - B) 4.
 - 10. Геометрическая сумма всех сил системы называется:
 - А) Радиус-вектор;
 - Б) Главный момент системы сил;
 - В) Главный вектор системы сил;+
 - 11. Интенсивность линейно распределенной нагрузки в системе СИ измеряется в:
 - A) H/M; +
 - Б) кг/м;
 - B) H/c.
 - 12. Сила F=2 H составляет с осью угол 90 градусов. Ее проекция на ось равна:
 - A) 0; +
 - Б) 2;
 - B) -2.
- 13. Точка движется по окружности радиуса 5 м с постоянной скоростью 5 м/с. Её нормальное ускорение $({\it M}/c^2)$ равно:
 - A) 0;
 - Б) 25;
 - B) 5.+
- 14. Точка движется по прямой по закону: x=t5+20t. Ускорение (M/c^2) в момент времени 1 с равно:
 - A) 20; +
 - Б) 21;
 - B) 25.

- 15. Движение абсолютно твердого тела, при котором любая прямая, проведенная в теле, перемещаясь, остается параллельной своему первоначальному направлению, называется:
 - А) вращательным;
 - Б) поступательным; +
 - В) плоскопараллельным.
 - 16. При сложном движении точки ее абсолютная скорость равна:
 - А) векторной сумме относительной и переносной скоростей;+
 - Б) векторному произведению относительной и переносной скоростей;
 - В) скалярному произведению относительной и переносной скоростей.
 - 17. Основным законом динамики точки не является:
 - А) закон равенства действия и противодействия;
 - Б) закон единства и борьбы противоположностей;+
 - В) закон инерции.
- 18. Точка массой 1 кг движется по прямой под действием силы F=6t. Начальная скорость V_o =5 м/c, начальное положение точки x_o =2 м. Координата x (м) в момент времени t=2 с равна:
 - A) 17;
 - Б) 19;
 - B) 20.+
- 19. Цилиндр массой 2 кг с радиусом 1 м вращается вокруг оси симметрии, проходящей через центр, по закону ϕ =2t. Кинетический момент тела относительно оси вращения $\left(\kappa z * {\it M}^2/c\right)$ равен:
 - A) 2; +
 - Б) 1;
 - B) 4.
- 20. Если линии действия сил системы пересекаются в одной точке, такая система называется:
 - А) плоская система сил;
 - Б) система параллельных сил;
 - В) система сходящихся сил.+
 - 21. Сила F=2 H составляет с осью угол 45 градусов. Ее проекция на ось равна:
 - A) $\sqrt{2}$; +
 - Б) $\sqrt{2}/2$;
 - B) $-\sqrt{2}$
- 22. Данная система уравнений не является формой равновесия плоской системы не сходящихся сил:
 - A) $\sum_{k=1}^n F_{kx}=0; \sum_{k=1}^n F_{ky}=0; \sum_{k=1}^n m_O(\vec{F}_k)=0$, где центр О лежит в плоскости действия сил.

- Б) $\sum_{k=1}^n m_A(\vec{F}_k) = 0$; $\sum_{k=1}^n m_B(\vec{F}_k) = 0$; $\sum_{k=1}^n m_C(\vec{F}_k) = 0$, где точки A, B и C не лежат на одной прямой.
 - B) $\sum_{k=1}^{n} F_{kx} = 0$; $\sum_{k=1}^{n} F_{ky} = 0$; $\sum_{k=1}^{n} F_{kz} = 0$; где оси x, y, z взаимно перпендикулярны. +
- 23. Точка движется по окружности радиуса 5 м со скоростью 5t м/с. Её касательное ускорение $({\it M/c}^2)$ в момент времени 1 с равно:
 - A) 0;
 - Б) 5; +
 - B) 25.
- 24. Точка движется по прямой по закону: x=5t4-20. Ускорение (M/c^2) в момент времени 1 с. равно:
 - A) 60; +
 - Б) 20;
 - B) 15
 - 25. Численное значение угловой скорости тела в данный момент времени равно:
 - А) первой производной от радиуса-вектора по времени;
 - Б) второй производной от угла поворота по времени;
 - В) первой производной от угла поворота по времени.+
 - 26. Кориолисово ускорение равно удвоенному векторному произведению:
 - А) переносной угловой скорости на относительную скорость точки;+
 - Б) переносной скорости на относительную угловую скорость;
 - В) относительной скорости точки на переносную угловую скорость.
 - 27. Сила F=2 H составляет с осью угол 0 градусов. Ее проекция на ось равна:
 - A) 0;
 - Б) 2; +
 - B) -2.
- 28. Теорема Вариньона о моменте равнодействующей может быть записана так: «Если система сил $\vec{F}_1, \vec{F}_2...\vec{F}_n$ имеет равнодействующую \vec{R} , то момент равнодействующей относительно любого центра O равен

A)
$$m_O(\vec{R}) = \sum_{k=1}^n m_O(\vec{F}_k); +$$

Б)
$$\sum_{k=1}^{n} m_O(\vec{F}_k) = 0$$
;

- B) $m_{o}(\vec{R}) = 0$.
- 29. Алгебраический момент силы относительно центра в системе СИ измеряется в:
- A) $H*_{M}$, +
- Б) Дж,
- В) Н/м.

- 30. Сила F=2 Н составляет с осью угол 180 градусов. Ее проекция на ось равна: A) 2, (5) -2, + B) 0. 31. Точка движется по окружности радиуса 5 м со скоростью 5t м/с. Её нормальное ускорение (M/c^2) в момент времени 1 с равно: A) 125; Б) 25; B) 5.+32. Точка движется по прямой по закону: $x=2t^5+4$. Ускорение (M/c^2) в момент времени 1 с. равно: A) 40; +Б) 10; B) 6. 33. Численное значение углового ускорения тела в данный момент времени равно: А) второй производной от радиуса-вектора по времени; Б) второй производной от угла поворота по времени;+ В) первой производной от угла поворота по времени.
 - 34. При сложном движении точки ее абсолютное ускорение равно:
 - А) векторной сумме относительного и переносного ускорений;
- Б) векторному произведению относительного, переносного и кориолисова ускорений;
 - В) векторной сумме относительного, переносного и кориолисова ускорений. +
 - 35. Количество движения точки это векторная величина, равная:
 - А) произведению массы точки на ее скорость;+
 - Б) произведению массы точки на ее ускорение;
 - В) произведению силы на элементарный промежуток времени.
- 36. Точка массой 3 кг движется по прямой под действием силы F=6t. Начальная скорость V_o = 3 м/c, начальное положение точки x_o = 1 м. Скорость точки (м/c) в момент времени t=1 с равна:
 - A)1;
 - Б) -2; +
 - B) -3.
- 37. Шар массой 2 кг с радиусом 1 м вращается вокруг оси симметрии, проходящей через центр, по закону ϕ =t. Угловое ускорение тела относительно оси вращения ($^{1\!/c^2}$) равно:
 - A) 0; +
 - Б) 1;
 - B) 2.
 - 38. Пара сил это система двух равных по модулю сил,
 - А) сонаправленных и лежащих на параллельных прямых;

- Б) направленных вдоль одной прямой в противоположные стороны;
- В) направленных в противоположные стороны и лежащих на параллельных прямых. +
 - 39. Реакция связи гладкой сферической поверхности направлена:
 - А) по касательной к поверхности;
 - Б) по радиусу поверхности к центру;
 - В) по радиусу поверхности от центра. +
 - 40. Сила F=2 H составляет с осью угол 60 градусов. Ее проекция на ось равна:
 - A) $\sqrt{3}$;
 - Б) -1;
 - B) 1.+
- 41. Точка движется по окружности радиуса 5 м со скоростью 10 м/с. Её касательное ускорение $({\it M/c}^2)$ в момент времени 1 с равно:
 - A) 10;
 - Б) 50;
 - B) 0.+
 - 42. Чтобы задать систему отсчета, необходимы:
 - А) тело отсчета и система координат;
 - Б) тело отсчета, часы и система координат;+
 - В) тело отсчета, траектория точки и система координат.
- 43. Точка движется по прямой по закону: $x = \sin \pi t$, где t время. Ускорение (M/c^2) в момент времени 1 с. равно:
 - A) 0;
 - $\mathbf{b})\pi$:
 - B) π^2 .+
- 44. Движение абсолютно твердого тела, при котором какие-нибудь две точки, принадлежащие телу или неизменно с ним связанные, остаются неподвижными, называется:
 - А) вращательным вокруг неподвижной точки;
 - Б) вращательным вокруг неподвижной оси;+
 - В) плоскопараллельным.
 - 45. Элементарный импульс силы это векторная величина, равная:
 - А) произведению массы точки на ее скорость;
 - Б) произведению массы точки на ее ускорение;
 - В) произведению силы на элементарный промежуток времени. +
- 46. Точка массой 2 кг движется по прямой под действием силы F. Закон движения точки $x=3t^3$. Числовое значение силы F (H) в момент времени t=1 c :
 - A) 6;
 - Б) 18;
 - B) 36.+

- 47. Шар массой 1 кг с радиусом 2 м вращается вокруг оси симметрии, проходящей через центр, по закону ϕ =2t. Кинетический момент тела относительно оси вращения $\left(\kappa z * {\it M}^2/c\right)$ равен:
 - A)3.2; +
 - Б) 32,
 - B) 18.
- 48. Для равновесия пространственной системы сил необходимо и достаточно, чтобы были равны нулю:
 - А) главный вектор и равнодействующая системы сил;
 - Б) главный вектор и главный момент системы сил; +
 - В) главный вектор или главный момент системы сил.
 - 49. Реакция связи гладкой наклонной плоскости направлена:
 - А) по нормали к плоскости;+
 - Б) по касательной к плоскости;
 - В) вертикально вверх.
 - 50. Сила F=2 H составляет с осью угол 135 градусов. Ее проекция на ось равна:
 - A) $\sqrt{2}$;
 - Б) $-\sqrt{2}$; +
 - B) $\sqrt{3}$.
- 51. Точка движется по прямой по закону: $x=6t-3t^4$. Скорость (M/C) в момент времени 1 с равна:
 - A) 3;
 - Б) -3;
 - B) -6.+
 - 52. Касательное ускорение точки численно равно:
 - А) первой производной от численного значения скорости по времени;+
 - Б) второй производной от радиуса-вектора точки по времени;
 - В) квадрату скорости, деленному на радиус кривизны траектории.
- 53. Движение абсолютно твердого тела, при котором все его точки перемещаются параллельно некоторой фиксированной плоскости, называется:
 - А) вращательным вокруг неподвижной точки;
 - Б) вращательным вокруг неподвижной оси;
 - В) плоскопараллельным.+
- 54. Дифференциальные уравнения движения точки в Декартовых координатах записываются так:

A)
$$m d^2 x/dt^2 = \sum_{k=1}^n F_{kx}$$
; $m d^2 y/dt^2 = \sum_{k=1}^n F_{xy}$; $m d^2 z/dt^2 = \sum_{k=1}^n F_{kz}$. +

Б)
$$m dx/dt = \sum_{k=1}^{n} F_{kx}$$
; $m dy/dt = \sum_{k=1}^{n} F_{xy}$; $m dz/dt = \sum_{k=1}^{n} F_{kz}$

B)
$$d^2x/dt^2 = \sum_{k=1}^n F_{kx}$$
; $d^2y/dt^2 = \sum_{k=1}^n F_{xy}$; $d^2z/dt^2 = \sum_{k=1}^n F_{kz}$.

55. Точка массой 1 кг движется по прямой под действием силы F=2t. Начальная ско-
рость V_0 =7 м/с, начальное положение точки x_0 =3 м. Скорость точки (м/с) в момент времени
t=1 с равна:
A)1;
Б) 7;
B) 8.+
56. Диск массой 1 кг с радиусом 2 м вращается вокруг оси симметрии, проходящей
Hence theurn, no seventy $\omega = 3t$. Moment when the public term of the correction of the property of $(\kappa^2 * M^2)$

через центр, по закону ϕ =3t. Момент инерции тела относительно оси вращения $(\kappa z^* M^2)$ равен:

```
A) 2; +
Б)6:
```

- B) 4.
- 57. Если данная система сил эквивалентна одной силе, то такая сила называется:
- А) Равнодействующая сил; +
- Б) Главный вектор;
- В) Уравновешивающая.
- 58. Момент силы относительно оси не равен нулю, если:
- А) Сила и ось параллельны;
- Б) Через силу и ось нельзя провести плоскость;+
- В) Сила и ось лежат в одной плоскости.
- 59. Диск радиуса 2 м вращается против часовой стрелки вокруг оси, проходящей через его центр и перпендикулярной плоскости диска. Угловая скорость диска $\omega = 3 \ pao/c$. По ободу диска по часовой стрелке движется точка со скоростью 3 м/с. Абсолютная скорость точки (m/c) численно равна:
 - A) 3; +
 - Б) 6;
 - B) 0.
- 60. 58. Момент количества движения точки относительно некоторого центра О равен векторному произведению:
 - А) количества движения точки на ее радиус-вектор, проведенный из центра;
- Б) радиуса-вектора движущейся точки, проведенного из центра, на ее количество движения; +
 - В) радиуса-вектора движущейся точки, проведенного из центра, на ее скорость.
- 61. Точка массой 2 кг под действием постоянной силы за 1 с изменила свою скорость с 4 до 6 м/с. Модуль силы (H), действующей на точку, равен:
 - A)12;
 - Б) 8;
 - B) 4.+
- 62. Шар массой 3 кг с радиусом 1 м вращается вокруг оси симметрии, проходящей через центр, под действием пары сил с моментом M=3.6t. Угловое ускорение шара относительно оси вращения ($1/c^2$) в момент времени 2с равно:

- A) 6; +
- Б) 3;
- B) 9.
- 63. Сила трения скольжения возникает:
- А) при стремлении катить одно тело по поверхности другого;
- Б) при стремлении двигать одно тело по поверхности другого;+
- В) только при скольжении одного тела по поверхности другого.
- 64. Линия действия силы F=5 H проходит через точку О на расстоянии 2м от точки приложения силы. Алгебраический момент силы F относительно точки О равен:
 - A) 0; +
 - Б) 5;
 - B) 10.
 - 65. Сила F=2 Н составляет с осью угол 30 градусов. Ее проекция на ось равна:
 - A) $\sqrt{3}$; +
 - Б) -1;
 - B) 1.
- 66. Точка движется по прямой по закону: $x=3t^3-2t+6$. Скорость (M/C) в момент времени 2 с равна:
 - A) 26;
 - Б) 34; +
 - B) 36.
 - 67. Нормальное ускорение точки численно равно:
 - А) первой производной от численного значения скорости по времени;
 - Б) второй производной от радиуса-вектора точки по времени;
 - В) квадрату скорости, деленному на радиус кривизны траектории.+
 - 68. Не является одним из углов Эйлера:
 - А) угол нутации;
 - Б) угол трения;+
 - В) угол собственного вращения.
- 69. Диск радиуса 2 м вращается против часовой стрелки вокруг оси, проходящей через его центр и перпендикулярной плоскости диска. Угловая скорость диска $\omega = 3 \ pao/c$. По ободу диска по часовой стрелке движется точка со скоростью 3 м/с. Относительная скорость точки (m/c) численно равна:
 - A) 3; +
 - Б) 6;
 - B) 0.
- 70. Теорема об изменении момента количества движения точки может быть записана следующим образом:

A)
$$\frac{d}{dt} \left[\vec{m}_O \left(m\vec{V} \right) \right] = \vec{m}_O \left(\vec{F} \right); +$$

Б)
$$\frac{d}{dt} \left[\vec{m}_O \left(\vec{F} \right) \right] = \vec{m}_O \left(m \vec{V} \right);$$

B)
$$\frac{d}{dt} \left[\vec{m}_O \left(m\vec{V} \right) \right] = m\vec{a}$$

- 71. Точка плоской фигуры, скорость которой в данный момент времени равна нулю, называется:
 - А) мгновенным центром координат;
 - Б) мгновенным центром скоростей;+
 - В) мгновенным центром ускорений.
- 72. Конус массой 1 кг с радиусом 2 м вращается вокруг оси симметрии, проходящей через центр основания, по закону ϕ =t. Кинетический момент тела относительно оси вращения $\left(\kappa_{\mathcal{E}} * M^2/c\right)$ равен:
 - A) 1.2; +
 - Б) 2.4;
 - B) 4.
 - 73. Момент силы относительно центра (вектор) равен:
- A) векторному произведению радиуса-вектора, проведенного из центра в точку приложения силы, на саму силу; $\,^+$
- Б) векторному произведению силы на радиус-вектор, проведенный из центра в точку приложения силы;
- В) скалярному векторному произведению силы на радиус-вектор, проведенный из центра в точку приложения силы произведению силы на радиус-вектор, проведенный из центра в точку приложения силы.
 - 74. Статика изучает:
 - А) равновесие тел без учета действия сил;
 - Б) равновесие тел под действием сил;+
 - В) движение тел под действием сил.
 - 75. Сила F=2 H составляет с осью угол 120 градусов. Ее проекция на ось равна:
 - A) $\sqrt{3}$;
 - Б) -1; +
 - B) 1.
- 76. Точка движется по прямой по закону: $x=t^5+20t$. Скорость (M/C) в момент времени 1 с равна:
 - A) 25; +
 - Б) 21;
 - B) 20.
 - 77. Не существует оси естественного трехгранника с таким названием:
 - А) главная нормаль;
 - Б) бинормаль;
 - В) горизонталь.+

- 78. Плоскопараллельное движение абсолютно твердого тела можно рассматривать как совокупность двух видов движения:
 - А) поступательного и вращательного;+
 - Б) прямолинейного и криволинейного;
 - В) поступательного и криволинейного.
- 79. Диск радиуса 2 м вращается против часовой стрелки вокруг оси, проходящей через его центр и перпендикулярной плоскости диска. Угловая скорость диска $\omega = 3 \ pao/c$. По ободу диска по часовой стрелке движется точка со скоростью 3 м/с. Переносная скорость точки (m/c) численно равна:
 - A) 3;
 - Б) 6; +
 - B) 0.
 - 80. Элементарной работой силы \vec{F} называется скалярная величина dA, равная:
 - A) $F_n ds$;
 - Б) $F_{\tau}ds$; +
 - B) Fds.
- 81. Точка массой 5 кг движется по прямой под действием силы F=5t. Начальная скорость Vo=5 м/с, начальное положение точки xo=2 м. Ускорение точки (m/c2) в момент времени t=2 с равно:
 - A) 2; +
 - Б) 5;
 - B) 10.
- 82. Конус массой 2 кг с радиусом 1 м вращается вокруг оси симметрии, проходящей через центр основания, по закону ϕ =2t. Кинетическая энергия конуса (Дж) равна:
 - A) 1.2; +
 - Б) 2.4;
 - B) 4.
 - 83. Угол трения это наибольший угол между:
 - А) реакцией шероховатой связи нормалью к поверхности; +
 - Б) предельной силой трения и нормалью к поверхности;
 - В) предельной силой трения и касательной к поверхности.
- 84. Реакция связи подвижной шарнирной опоры лежит в плоскости, перпендикулярной оси шарнира, и направлена
 - А) под произвольным углом;
 - Б) по часовой стрелке;
 - В) по нормали к поверхности, на которой расположена опора.+
 - 85. Сила F=2 Н составляет с осью угол 150 градусов. Ее проекция на ось равна:
 - A) $\sqrt{3}$; +
 - Б) -1;
 - B) 1.

86. Точка движется по прямой по закону: $x=5t^4-20$. Ускорение (M/c^2) в момент вре-
мени 1 с равно:
A) 60; +
Б) 0;
B) -15.
87. Численное значение мгновенной скорости точки равно:
А) перемещению, деленному на время;
Б) криволинейной координате, деленной на время;
В) первой производной от криволинейной координаты по времени.+
88. Изменение кинетической энергии точки при некотором ее перемещении равно:
А) геометрической сумме всех действующих на точку сил на этом перемещении;
Б) геометрической сумме работ всех действующих на точку сил на этом перемеще-
нии;
В) алгебраической сумме работ всех действующих на точку сил на этом перемеще-
нии.+

89. Точка массой 5 кг движется по прямой под действием силы F=10t. В момент времени t=1c скорость точки была 5 м/c. Начальная скорость точки (м/c) равна:

- A) 4; +
- Б) 5;
- B)6.

90. Твердое массой 1 кг с радиусом инерции 2 м вращается вокруг оси по закону ϕ =3t. Кинетический момент тела относительно оси вращения $(\kappa z * M^2/c)$ равен:

- A) 4;
- Б) 3;
- B) 12.+

91. Нормальное давление твердого тела на опорную поверхность в данной точке равно 2 H, коэффициент трения скольжения равен 0,12. Величина силы трения в этой точке равна:

- A) 2,4 H;
- Б) 0,24 Н; +
- B) 0,6 H.

92. Для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы:

- А) суммы проекций этих сил на каждую из трех координатных осей были равны нулю;+
- Б) суммы проекций этих сил на каждую из двух координатных осей были равны нулю;
- В) суммы моментов этих сил относительно трех координатных осей были равны нулю.
- 93. Действие данной силы на абсолютно твердое тело не изменится, если перенести точку приложения силы:
 - А) в любую другую точку тела;
 - Б) в любую точку тела вдоль его оси симметрии;

- В) в любую точку тела вдоль линии действия силы. +
- 94. Точка движется по прямой по закону: $x=4t^4+3t^3$. Ускорение (M/c^2) в момент времени 1 с равно:
 - A) 66; +
 - Б) 25;
 - B) 7.
 - 95. Средняя скорость точки за промежуток времени равна:
 - А) перемещению, деленному на время;+
 - Б) криволинейной координате, деленной на время;
 - В) первой производной от криволинейной координаты по времени.
- 96. Точка плоской фигуры, ускорение которой в данный момент времени равно нулю, называется:
 - А) мгновенным центром координат;
 - Б) мгновенным центром скоростей;
 - В) мгновенным центром ускорений.+
- 97. Диск радиуса 2 м вращается против часовой стрелки вокруг оси, проходящей через его центр и перпендикулярной плоскости диска. Угловая скорость диска $\omega = 3 \, pa \partial/c$. По ободу диска по часовой стрелке движется точка со скоростью 3 м/с. Кориолисово ускорение точки $({\it M/c}^2)$ численно равно:
 - A)4,5;
 - Б) 18; +
 - B) 0.
 - 98. Кинетической энергией материальной точки называется:
 - А) векторная величина, равная произведению массы точки на ее скорость;
- Б) скалярная величина, равная половине произведения массы точки на квадрат ее скорости;+
 - В) работа, совершаемая в единицу времени.
- 99. Точка массой 1 кг под действием постоянной силы за 2 с изменила свою скорость с 4 до 6 м/с. Модуль силы (H), действующей на точку, равен:
 - A) 1; +
 - Б) 2;
 - B) 3.

100. Вращательное движение твердого тела описывается выражением:

- A) $F = G(m_1 m_2 / R^2)$;
- Б) p = mv;
- B) $M_z = J_z \varepsilon_z +$

Перечень вопросов к промежуточной аттестации (экзамен)

- 1. Основные понятия и определения.
- 2. Аксиомы статики.
- 3. Понятие силы. Проекция силы на ось и плоскость.
- 4.Сложение и разложение сил.
- 5.Связи и их реакции. Виды связей. Аксиома связей.
- 6.Плоская сходящаяся система сил.
- 7. Моменты силы относительно точки и оси.
- 8. Пара сил и ее свойства.
- 9.Плоская произвольная система сил. Приведение системы сил к данному центру. Главный вектор и главный момент системы сил.
 - 10. Приведение плоской системы сил к простейшему виду.
 - 11. Условия равновесия плоской системы сил.
 - 12.Опорные устройства балок.
 - 13. Момент силы относительно оси.
 - 14. Распределенная нагрузка.
 - 15.Силы сцепления и трения скольжения.
 - 16. Центр тяжести. Центр тяжести твердого тела.
 - 17. Способы определения координат центров тяжести тел.
- 18.Векторный способ задания движения точки. Определение траектории, скорости и ускорения.
- 19. Координатный способ задания движения точки. Определение траектории, скорости и ускорения.
- 20. Естественный способ задания движения точки. Определение траектории, скорости и ускорения.
- 21. Частные случаи движения точки (прямолинейное, криволинейное, равномерное, равнопеременное).
 - 22. Вращение твердого тела вокруг неподвижной оси (вращательное движение).
 - 23. Поступательное движение твердого тела.
- 24.Определение угловой скорости и углового ускорения. Угловая скорость и угловое ускорение как вектора.
 - 25.Определение скоростей и ускорений точек тела при вращательном движении.
- 26.Мгновенный центр скоростей. Определение скоростей точек тела при плоском движении с помощью МЦС.
 - 27.Основные понятия динамики (масса, инертность, типы переменных сил, вес тела).
 - 28.Основные законы динамики.
 - 29. Дифференциальные уравнения движения точки.
 - 30. Первая и вторая задачи динамики.
 - 31. Количество движения и импульс силы,
 - 32. Работа силы. Частные случаи определения работы. Мощность.
 - 33. Теорема об изменении количества движения точки. Значение, применение.
 - 34. Теорема об изменении кинетической энергии точки. Применение теоремы.
 - 35. Теорема об изменении момента количества движения точки.
 - 36. Механическая система. Внешние и внутренние силы. Свойства внутренних сил.
- 37.Понятие центра масс механической системы, определение скорости и ускорения центра масс.
- 38. Момент инерции тела относительно оси. Формулы для определения моментов инерции некоторых однородных тел. Радиус инерции.
- 39.Закон сохранения количества движения механической системы. Примеры действия закона.

- 40. Теорема о движении центра масс механической системы. Значение, применение.
- 41. Кинетическая энергия системы. Кинетическая энергия твердого тела при различных видах движения.
 - 42. Теорема об изменении кинетической энергии системы.