НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Электрическая часть электростанций и подстанций дисциплины:

13.03.02 Электроэнергетика и электротехника направление подготовки:

направленность: Электроснабжение

форма обучения: заочная Фонд оценочных средств разработан в соответствии с утвержденным учебным планом от 22.04.2019 г. и требованиями ОПОП ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника, направленность Электроснабжение, к результатам освоения дисциплины «Электрическая часть электростанций и подстанций».

Фонд оценочных средств рассмотрен на заседании кафедры Транспорта и технологий нефтегазового комплекса

Протокол № 9 от «15» мая 2019 г.

Заведующий кафедрой ______ А.В.Козлов

Фонд оценочных средств разработал:

Аникин И.Ю., доцент кафедры ТТНК, к.п.н., доцент

1. Результаты обучения по дисциплине

Таблица 1.1

Код и наименование компетенции	Код и наименование индикатора достижения компетенции (ИДК)	Код и наименование результата обучения по дис- циплине (модулю)
ПКС-1 Способен участвовать в проектировании систем электроснабжения городов, промышленных предприятий, сельского	ПКС-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентноспособные варианты технических решений.	Знать (31): методы сбора и анализ данных для проектирования, основы конкурентноспособности Уметь (У1): собирать и анализировать данные для проектирования, составляет конкурентноспособные варианты технических решений Владеть (В1): методами сбора и анализ данных для проектирования, составления конкурентноспособных вариантов технических решений
хозяйства, транспортных систем и их объектов	ПКС-1.2. Обосновывает выбор целесообразного решения	Знать (32): сущность обоснования выбора целесообразного решения Уметь (У2): обосновать выбор целесообразного решения Владеть (В2): процессом обоснования выбора целесообразного решения
ПКС-2 Способен участвовать в эксплуатации систем электроснабжения горо- дов, промышленных	ПКС-2.1. Применяет методы и технические средства испытаний и диагностики электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства, транспортных систем и их объектов	Знать (33): методы и технические средства испытаний и диагностики электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства Уметь (УЗ): применять методы и технические средства испытаний и диагностики электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства Владеть (ВЗ): методами и техническими средствами испытаний и диагностики электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства
предприятий, сельского хозяйства, транспортных систем и их объектов	ПКС-2.2. Демонстрирует знания организации технического обслуживания и ремонта электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства, транспортных систем и их объектов	Знать (34): методику организации технического обслуживания и ремонта электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства Уметь (У4): организовать техническое обслуживания и ремонт электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства Владеть (В4): навыками организации технического обслуживания и ремонта электрооборудования систем электроснабжения городов, промышленных предприятий, сельского хозяйства

2. Формы аттестации по дисциплине

2.1. Форма аттестации: экзамен.

2.2. Формы текущей аттестации:

Таблица 2.1

No	Форма обучения
712	Форма обучения
Π/Π	3ФО
1	Тестирование
2	Колоквиум
3	Практические расчетные занятия
4	Контрольная работа

3. Результаты обучения по дисциплине, подлежащие проверке при проведении текущей и промежуточной аттестации

Таблица 3.1

	Структ	урные элементы дисципли-	Код результата обу-	Оценочны	е средства
No		ны/модуля	чения по дисци-	Текущая	Итоговая
п/п	Номер	Дидактические единицы	плине/модулю	аттестация	аттестация
	раздела	(предметные темы)		_	**
		1. Основные виды электро-	ПКС-1.1.	Тестирова-	Устный эк-
		станций на традиционных	ПКС-1.2.	ние	замен
1	1	источниках энергии	ПКС-2.2		
1	1	2. Электростанции на не-			
		традиционных источниках			
		энергии			
		3. Подстанции	ПКС-1.2.	Практиче-	Устный эк-
2	2	4.Распределительные	ПКС-2.1.	ское занятие	замен
2	2	устройства (РУ)		(экскурсия),	
				коллоквиум	
		Комплектные	ПКС-2.1.	Практиче-	Устный эк-
3	3	трансформаторные	ПКС-2.2.	ское заня-	замен
		подстанции (КТП)		тие.	

4. Фонд оценочных средств

- 4.1. Фонд оценочных средств, позволяющие оценить результаты обучения по дисциплине, включает в себя оценочные средства для текущей аттестации и промежуточной аттестации.
- 4.2. Фонд оценочных средств для текущей аттестации включает:
 - комплект тестов к аттестации 33 шт. (Приложение 1);
 - вопросы к коллоквиуму 31 шт. (Приложение 2);
- расчетное задание к текущей аттестации 25 вариантов (Приложение 3), (приведены в методических указаниях для практических занятий по дисциплине «Электрическая часть электростанций и подстанций»);
- варианты заданий к контрольной работе 25 вариантов (Приложение 4), (приведены в методических указаниях к контрольной работе по дисциплине по дисциплине «Электрическая часть электростанций и подстанций»).
- 4.3. Фонд оценочных средств для промежуточной аттестации включает:
- вопросов к экзамену для промежуточной аттестации по дисциплине 51 шт., (Приложение 5).

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Тестовое залание

1. Электростанции,	снабжающие	потребителей	только	электроэнергией	располагаю-
щиеся в районе энер	гетических за	пасов:			

- А) ТЭС
- В) ГЭС
- С) АЭС
- Д) ГРЭС
- Е) КЭС

2. Первичные двигатели в турбогенераторах...

- А) Паровая турбина
- В) Синхронный двигатель
- С) Паронагреватель
- D) Асинхронный двигатель
- Е) Гидротурбина

3. Выберите напряжение генератора, которое не соответствует стандартной шкале напряжений

- А) 23,15 кВ
- В) 20 кВ
- С) 15,75 кВ
- D) 3,15 кВ
- Е) 13,8 кВ

4. Первичными двигателями в гидрогенераторах является ...

- А) Гидротурбина
- В) Синхронный двигатель
- С) Паронагреватель
- D) Паровая турбина
- Е) Асинхронный двигатель

5. Схема совокупности основного электрооборудования, сборных шин, коммутационной и первичной аппаратуры

- А) Главная схема электрических соединений электростанции
- В) Главная схема электрических соединений атомной станции
- С) Главная схема электрических соединений гидростанции
- D) Главная схема электрических соединений тепловой станции
- Е) Главная структурная схема электрических соединений

6. На атомной электростанции (АЭС) энергия получается в результате
А) Деления ядер урана на осколки
В) Преобразования газа
С) Сжигания нефти
D) Сжигания угля
Е) Использования энергии ветра

7. Расшифровка ГРЭС

- А) Государственная районная электростанция
- В) Гидравлическая республиканская электростанция
- С) Гидравлическая районная электростанция
- D) Городская районная электростанция
- Е) Государственная республиканская электростанция

8. Как делятся тепловые электрические станции ТЭС по характеру обслуживания	8.	Как делятся	тепловые элект	рические станц	ии ТЭС по ха	рактеру обслу	живания
---	----	-------------	----------------	----------------	--------------	---------------	---------

- А) ГРЭС
- В) КЭС
- С) ТЭЦ
- Д) АЭС
- Е) перечисленные в п. А, В, С

9. Электростанции, снабжающие потребителей только электроэнергией, но удаленные от них и передающие вырабатываемую мощность на высоких и сверхвысоких напряжениях.

- А) ТЭС
- В) ГЭС
- С) ГРЭС
- Д) КЭС
- Е) АЭС

10. Предприятия или установки, предназначенные для производства электроэнергии.

- А) электростанция
- В) энергосистема
- С) трансформаторная подстанция
- Д) система электроснабжения
- Е) электрическая система

11. В зависимости от вида энергии, потребляемой первичным двигателем, электростанции могут быть:

- А) тепловыми
- В) гидроэлектростанциями
- С) атомными
- Д) газотурбинными
- Е) все вышеперечисленное

12. Совокупность установок по выработке, распределению и потреблению электроэнергии и теплоты, связанных между собой электрическими и тепловыми сетями -

- А) система электроснабжения
- В) энергетическая система
- С) электрическая система
- Д) электростанция

E)	теплоэлект	ростани	ия
,	1 CHILD SHOKE	ростанц	, 11/1

13.	Схема,	на	которой	показываются	основные	функциональные	части	электроуста-
нон	вки и свя	язи	между ні	ИМИ				

- А) принципиальная
- В) оперативная
- С) структурная
- Д) главная
- Е) функциональная

14. Совокупность устройств, для производства, передачи и распределения электрической энергии это:

- А) энергетическая система
- В) система электроснабжения
- С) электростанция
- Д) источник питания
- Е) электрическая система

15. Электростанция, снабжающая потребителей электрической и тепловой энергии, располагающаяся в районе их потребления:

- А) КЭС
- В) ТЭЦ
- С) ГРЭС
- Д) ГЭС
- Е) АЭС

16. Какая электростанция преобразует водную энергию в электрическую?

- А) АЭС
- В) ТЭС
- С) ГЭС
- Д) ГРЭС
- Е) КЭС

17. Электростанции, снабжающие потребителей только электроэнергией располагающиеся в районе энергетических запасов:

- A) TЭC
- В) ГЭС
- С) АЭС
- Д) ГРЭС
- Е) КЭС

18. Промышленное предприятие, вырабатывающее электроэнергию и обеспечивающее её передачу потребителям по электрической сети

- 1) электроустановка
- 2) электростанция
- 3) подстанция
- 4) электрическая сеть

19. Механическая энергия водного потока реки (гидравлическая энергия) преобразуется в электрическую энергию на

1) A₃C

- 2) T₃C
- 3) ГЭС
- 4) KA9C

20. Тепловые паротурбинные станции, использующие в качестве топлива ядерное горючее

- 1) A₃C
- 2) T₃C
- 3) F3C
- 4) KA3C

21. Энергия, выделяемая при сгорании каменного угля, торфа, газа, нефти и других видов топлива, преобразуется в электрическую энергию на

- 1) A₃C
- 2) T₃C
- 3) ГЭC
- 4) KA₃C

22. Механическая энергия воздушного потока преобразуется в электрическую энергию на

- 1) A₃C
- 2) T9C
- 3) F₃C
- 4) B₃C

23. Устройство, предназначенное для преобразования механической энергии в электрическую энергию

- 1) трансформатор
- 2) электрический двигатель
- 3) генератор
- 4) измерительный трансформатор

24. Электрическая станция – это...

- 1) электроустановка, производящая электрическую энергию;
- 2) электроустановка, производящая электрическую и тепловую энергию;
- 3) электроустановка, производящая электрическую или электрическую и тепловую энергию.

25. Генератор служит для

- 1) преобразования механической энергии в электрическую энергию;
- 2) преобразования тепловой энергии в электрическую энергию;
- 3) преобразования химической энергии в электрическую энергию.

26. Тепловые электростанции (ТЭС) делятся на:

- 1) ТЭЦ и ГРЭС;
- 2) ГРЭС и КЭС;
- 3) ТЭЦиКЭС.

27. В электрические сети промышленной энергетики входят электростанции:

- 1) K9C, B9C, A9C;
- ΤЭС, СЭС, ПЭС;

3) ТЭС, АЭС, ГЭС.

28. Какое из перечисленного электрооборудования на ТЭС входит в основное?

- 1) трансформатор, насос, вентилятор, дымосос, турбина, котел, деаэратор;
- 2) генератор, насос, вентилятор, дымосос, турбина, котел, деаэратор;
- 3) трансформатор, ЛЭП, насос, вентилятор, дымосос, котел, деаэратор.

29. Каким из перечисленных электрооборудований на ТЭС считается вспомогательным?

- 1) трансформатор, ЛЭП, выключатель, измерительные приборы, деаэратор;
- 2) трансформатор, ЛЭП, насос, вентилятор, дымосос, котел, деаэратор;
- 3) выключатель, измерительные приборы и автоматика, разъединитель.

30. Качество электроэнергии определяется по значению

- 1) напряжения;
- 2) напряжения и частоты;
- 3) частоты.

31. Традиционные электростанции это...

- 1) K₃C, C₃C;
- 2) ПЭС, ГЕОТЭС;
- 3) АЭС, ГЭС, КЭС.

32. Качество электроэнергии определяется по значению

- 1) напряжения;
- 2) напряжения и частоты;
- 3) частоты.

33. Традиционные электростанции это...

- 1) K₃C, C₃C;
- 2) ПЭС, ГЕОТЭС;
- 3) АЭС, ГЭС, КЭС.

Критерии оценки:

Процент правильных ответов	До 40%	41-60%	61-80%	81-100%
Количество баллов за решенный тест	1-2	3-4	5-7	8-10

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ высшего образования

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Теоретический письменный коллоквиум

Перечень вопросов:

- Назначение и классификация подстанций.
- Виды электрических подстанций. 2.
- 3. Закрытые подстанции глубокого ввода.
- 4. Схемы электрических соединений подстанций.
- Оборудование подстанций. Силовые трансформаторы и автотрансформаторы. 5.
- 6. Назначение и классификация РУ.
- 7. Виды главных схем.
- 8. Одна рабочая система шин, секционированная выключателем.
- 9. Блочные схемы. Мостиковые схемы.
- 10. Схема квадрата. Одна рабочая система шин с обходной.
- 11. Две рабочие системы шин с обходной. Схемы 3/2 и 4/3
- 12. Основное оборудование подстанций.
- 13. Комплектные трансформаторные подстанции. Состав и назначение.
- 14. Комплектные трансформаторные подстанции блочного типа (КТПБ) с высшим напряжением 35-220 кВ. Назначение. Преимущества.
- 15. ОРУ 110 кВ по схеме «Две рабочие и обходная системы шин». Назначение электрических аппаратов и токоведущих частей ОРУ.
- 16. Состав электрооборудования КТПБ 110/10 кВ с отделителями и короткозамыкателями.
- 17. Комплектные распределительные устройства с элегазовой изоляцией (КРУЭ). Преимущества КРУЭ перед открытыми распределительными устройствами (ОРУ).
 - 18. Конструкции типовых ячеек КРУЭ со сборными шинами.
- 19. Трансформаторы электрических станций и подстанций. Классификация силовых трансформаторов. Основные параметры силовых трансформаторов.
- 20. Режимы работы трансформаторов. Нагрузочная способность трансформаторов. Допустимые аварийные и систематические перегрузки трансформаторов.
- 21. Электрические аппараты распределительных устройств электростанций и подстанций. Назначение. Обозначение на схемах.
- 22. Комплектные распределительные устройства (КРУ, КРУН). Назначение. Состав оборудования ячеек КРУ.
- 23. Разновидности шкафов КРУ разного функционального назначения. Сетки схем соединений шкафов КРУ. Ретрофит ячеек КРУ.
 - 24. Классификация трансформаторных подстанций.
 - 25. Схемы электрических соединений станций и подстанций.
- 26. Комплектные распределительные устройства (КРУ, КРУН). Назначение. Состав оборудования ячеек КРУ.
 - 27. Разновидности шкафов КРУ разного функционального назначения.

- 28. Измерительные трансформаторы. Обозначение на электрических схемах. Назначение.
- 29. Состав оборудования типовых ячеек ОРУ по схеме «Две рабочие и обходная системы шин»: воздушной линии, трансформатора, шиносоединительного и обходного выключателя.
- 30. Конструкции шкафа КРУ для подключения кабельной линии. Токоведущие элементы подстанций.
 - 31. Схемы электрических соединений станций и подстанций.

Критерии оценки:

При оценке знаний обучающиеся получают два вопроса из выше представленного списка и письменно отвечают на них.

Вопрос/Ответ	Ответ полный	Ответ неполный	Ответ отсутствует
	письменный	коллоквиум	
вопрос 1	10	1-9	0
вопрос 2	10	1-9	0
Итого:	20	2-18	0

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Практические занятия

Практическое занятие №1.

Задание (25 вариантов)

Выполнить расчет нагрузки, выбрать мощности и марки трансформаторов ТП напряжением 10/0,4 кВ, запитывающей группу потребителей с напряжением 380 В.

Начертить соответствующую однолинейную схему, учитывая, что ТП запитаны по ВЛЭП.

Данные для расчета представлены в методических указаниях для практических занятий.

Критерии оценки:

	Задание выполнено правильно	Имеются недочёты	Задание выполнено, но один из элентов не выполнен	Задание не выполнено
Задача	30	20	10	0

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Контрольная работа

Задание (25 вариантов)

Двухтрансформаторная подстанция напряжением 10/0,4кВ запитывает группу потребителей с напряжением 380 В.

Необходимо:

- Начертить однолинейную схему.
- Выбрать мощность и марки трансформаторов.
- Выбрать жесткие шины.
- Выбрать марку кабеля, запитывающего потребители, проложенного в земле и рассчитать сечение его жил. Проверить по допустимому падению напряжения.

Данные для расчета представлены в методических указаниях для контрольной работы.

Критерии оценки:

		Задание выполне-	Задание выполне-	
	Задание	но, но имеются	но, но имеются	Эологио ио
	выполнено	недочёты при вы-	недочёты при вы-	Задание не
	правильно	боре марок элемен-	боре марок элемен-	выполнено
		ТОВ	тов и в расчетах	
Задание	40	30	15	0

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Перечень вопросов к итоговой аттестации (экзамен)

- 1. Основные типы электрических станций. Сравнительная характеристика станций КЭС, ТЭЦ, АЭС и ГЭС.
 - Электрооборудование электрических станций.
- Основные требования, предъявляемые к энергосистемам, как основным источникам питания потребителей электрической энергией.
 - Собственные нужды станций и подстанций.
 - 5. Основное оборудование подстанций.
 - Комплектные трансформаторные подстанции. Состав и назначение.
- Комплектные трансформаторные подстанции блочного типа (КТПБ) с высшим напряжением 35-220 кВ. Назначение. Преимущества.
- ОРУ 110 кВ по схеме «Две рабочие и обходная системы шин». Назначение электрических аппаратов и токоведущих частей ОРУ.
- 9. Состав электрооборудования КТПБ 110/10 кВ с отделителями и короткозамыкателями.
- 10. Комплектные распределительные устройства с элегазовой изоляцией (КРУЭ). Преимущества КРУЭ перед открытыми распределительными устройствами (ОРУ). Конструкции типовых ячеек КРУЭ со сборными шинами.
- 11. Трансформаторы электрических станций и подстанций. Классификация силовых трансформаторов. Основные параметры силовых трансформаторов.
- 12. Режимы работы трансформаторов. Нагрузочная способность трансформаторов. Допустимые аварийные и систематические перегрузки трансформаторов.
- 13. Электрические аппараты распределительных устройств электростанций и подстанций. Назначение. Обозначение на схемах.
- 14. Отключение цепей переменного тока. Процессы, сопровождающие отключение цепей. Гашение дуги.
- 15. Комплектные распределительные устройства (КРУ, КРУН). Назначение. Состав оборудования ячеек КРУ.
- 16. Разновидности шкафов КРУ разного функционального назначения. Сетки схем соединений шкафов КРУ. Ретрофит ячеек КРУ.
 - 17. Классификация трансформаторных подстанций.
 - 18. Производство электрической энергии на электростанциях.
 - 19. Схемы электрических соединений станций и подстанций.
- 20. Режимы короткого замыкания (КЗ). Причины и виды коротких замыканий. Токи и другие параметры, характеризующие режим КЗ.
 - 21. Термическое действие токов КЗ. Динамическое действие тока КЗ.
- 22. Высоковольтные выключатели. Назначение. Обозначения на электрических схемах. Классификация. Основные типы.

- 23. Выключатели нагрузки. Функциональное назначение. Обозначение на электрических схемах. Основные типы.
- 24. Разъединители, отделители и короткозамыкатели. Назначение. Обозначение на электрических схемах. Классификация.
 - 25. Режимы нейтрали.
- 26. Измерительные трансформаторы. Обозначение на электрических схемах. Назначение.
- 27. Состав оборудования типовых ячеек ОРУ по схеме «Две рабочие и обходная системы шин»: воздушной линии, трансформатора, шиносоединительного и обходного выключателя.
- 28. Устройство выключателя нагрузки $BH(\Pi)$ -16. Устройство кварцевых предохранителей типа Π K-10.
 - 29. Реклоузеры. Область использования. Функциональное назначение.
- 30. Варианты использования токоограничивающих реакторов для ограничения токов К.3. Обозначение токоограничивающих реакторов на электрических схемах. Их классификация.
 - 31. Конструкции шкафа КРУ для подключения кабельной линии.
 - 32. Токоведущие элементы подстанций.
- 33. Типы основных электрических станций. Виды тепловых электростанций (ТЭС) и их отличия.
- 34. Классификация электрических станций по виду источника энергии преобразуемого в электрическую энергию.
 - 35. Виды и отличия электростанций использующих энергию воды.
 - 36. Виды электростанций использующих энергию солнца.
 - 37. Ветростанции, геотермальные станции. Назначение принцип действия.
 - 38. Шины. Их конструкция и область применения.
 - 39. Выбор и проверка шин.
 - 40. Изоляторы. Назначение и классификация.
 - 41. Опорные изоляторы. Их область применения.
 - 42. Конструкция проходных изоляторов 110 кВ и выше.
 - 43. Подвесные изоляторы. Их конструкции и область применения.
 - 44. Чем обеспечивается высокая механическая прочность тарельчатых изоляторов?
- 45. Назначение измерительных трансформаторов и требования, предъявляемые к ним.
 - 46. Область применения трансформаторов напряжения по классу точности.
 - 47. Назначение и классификация подстанций.
 - 48. Виды электрических подстанций.
 - 49. Закрытые подстанции глубокого ввода.
 - 50. Схемы электрических соединений подстанций.
 - 51. Оборудование подстанций. Силовые трансформаторы и автотрансформаторы.