МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Математические задачи в электроэнергетике дисциплины: 13.03.02 Электроэнергетика и электротехника направление подготовки:

направленность: Электроснабжение

форма обучения: заочная Фонд оценочных средств разработан в соответствии с утвержденным учебным планом от 22.04.2019 г. и требованиями ОПОП ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника, направленность Электроснабжение, к результатам освоения дисциплины «Математические задачи в электроэнергетике».

Фонд оценочных средств рассмотрен на заседании кафедры ПМЕНД
Протокол № 9 от «15» мая 2019 г.
Заведующий кафедрой О.С. Тамер
СОГЛАСОВАНО: Заведующий
Выпускающей кафедрой А.В. козлов
«15» мая 2019 г.
Ронд оценочных средств разработал:
Camer O.C. II II II I Inodescon

Тамер О.С. д.п.н., профессор

1. Результаты обучения по дисциплине

Таблица 1.1

	1	· · · · · · · · · · · · · · · · · · ·
Код и наименование компетенции	Код и наименование индикаторов достижения компетенций	Результаты обучения по дисциплине
	ПКС-1.2 Обосновывает выбор целесообразного решения	Знать (31): основные математические законы, связанные со спецификой работы электрических систем и сетей Уметь (У1): рассчитать характеристики рабочих, ремонтных и послеаварийных режимов Владеть (В1): методами инженерного расчета электрических сетей, обеспечивающими требуемую надежность электроснабжения потребителей и показатели качества электроэнергии
ПКС-1 Способен участвовать в проектировании систем электроснабжения городов, промышленных предприятий, сельского хозяйства, транспортных систем и их объектов	ПКС-1.4 Демонстрирует понимание взаимосвязи задач проектирования и эксплуатации	Знать (32): основные математические законы, связанные со спецификой работы электрических сетей и систем, основные причины, приводящие к электромагнитным переходным процессам в электрических системах, существо физических явлений, происходящих в электрических системах и системах электроснабжения промышленных предприятий при различного рода возмущениях нормального установившегося режима Уметь (У2): рассчитывать токи симметричных и несимметричных коротких замыканий различными методами, в зависимости от требуемой точности конечных результатов, вводить необходимые и обоснованные допущения и ограничения Владеть (В2): навыками расчета режимов электрических схем замещения системы гранспорта электрической энергии методами анализа полученных

2. Формы аттестации по дисциплине

2.1. Форма аттестации: экзамен.

2.2. Формы текущей аттестации:

Таблица 2.1

No	Форма обучения
Π/Π	3ФО
1	Практические занятия

3. Результаты обучения по дисциплине, подлежащие проверке при проведении текущей и промежуточной аттестации

Таблина 3.1

	Структура дисциплины		Аудиторные занятия, час.			I/ avv	Door			
№ п/п	Ном ер разд ела	Наименование раздела	Л.	Лаб	Пр.	час.	Кон трол ь		Код ИДК	Оценочны е средства
1	1	Общая постановка задачи оптимизации	6	1	6	70		82	ПКС- 1.2 ПКС- 1.4	Практиче ские занятия
2	2	Методы решения задач линейного программирования	4	1	4	40		48	ПКС- 1.2 ПКС- 1.4	Практиче ские занятия
3	Зачет					10	4	14	ПКС- 1.2 ПКС- 1.4	Вопросы к Зачету
	•	Итого:	10		10	120	4	144		

4. Фонд оценочных средств

- 4.1. Фонд оценочных средств, позволяющие оценить результаты обучения по дисциплине, включает в себя оценочные средства для текущей аттестации и промежуточной аттестации.
- 4.2. Фонд оценочных средств для текущей аттестации включает:
- типовые расчетные задания по разделу: «Общая постановка задачи оптимизации» (приведены в методических указаниях для практических занятий по дисциплине «Математические задачи в электроэнергетике») 25 вариантов;
- типовые расчетные задания по разделу: «Методы решения задач линейного программирования» (приведены в методических указаниях для практических занятий по дисциплине «Математические задачи в электроэнергетике») 25 вариантов;
- 4.3. Фонд оценочных средств для промежуточной аттестации включает:
 - вопросов к зачету для промежуточной аттестации 39 шт., (Приложение 1).

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Перечень вопросов к промежуточной аттестации (зачет)

- 1. Цели и задачи дисциплины. Основные понятия и определения.
- 2. Техническая постановка задачи расчета и анализа установившихся режимов электрических систем.
 - 3. Электрическая система (ЭС) как объект математического моделирования.
 - 4. Понятие режима работы ЭС. Виды режимов.
 - 5. Параметры режима функционирования ЭС.
 - 6. Характеристика ЭЭС как объекта оптимизации.
 - 7. Содержательная постановка и классификация оптимизационных задач.
 - 8. Общий вид математической модели задачи оптимизации.
 - 9. Классификация математических моделей и методов
 - 10. Формирование математической модели по содержательной постановке задачи.
- 11. Общая характеристика разделов прикладной математики, используемых при решении задачи расчета установившихся режимов ЭС.
 - 12. Понятие схемы замещения электрической системы.
- 13. Схемы замещения источников энергии потребителей и элементов электрической сети.
 - 14. Задача о рациональном распределении ресурсов.
 - 15. Задача рациональной загрузки оборудования. транспортная задача.
 - 16. Задача о рациональной смеси.
 - 17. Методы решения задач линейного программирования.
 - 18. Графический и аналитический симплекс метод решения задач.
 - 19. Пример перехода от реальной схемы электрической системы к схеме замещения.
 - 20. Моделирование электрической сети с помощью направленного графа.
 - 21. Процедура симплекс-метода при известном базисном решении.
 - 22. Табличная реализация симплекс метод.
- 23. Использование матричных методов прикладной математики для моделирования процессов. происходящих в электрической системе.
 - 24. Основы матричной алгебры
 - 25. Применение теории нечетких множеств.
 - 26. Основные понятия и определения.
- 27. Математическая модель задачи линейного программирования в нечеткой постановке.
- 28. Задача оптимального распределения ресурсов в энергетической системе при нечеткой информации.
 - 29. Матрицы инциденций первого и второго рода.
- 30. Правила формирования матриц инциденций исходя из структуры электрической сети представленной в виде графа.
 - 31. Матрицы режимных параметров.

- 32. Виды уравнений состояния электрической системы
- 33. Элементы алгебры, логики при решении задач электроэнергетики.
- 34. Основные понятия и определения.
- 35. Методы минимизации хаотических функций.
- 36. Аналитический метод минимизации.
- 37. Представление в матричной форме основных законов электротехники: закона Ома, первого и второго закона Кирхгофа.
 - 38. Уравнения узловых напряжений.
 - 39. Структура и физический смысл элементов матрицы узловых проводимостей