МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

дисциплины: Основы строительства скважин

направление подготовки: 21.03.01 Нефтегазовое дело

профиль: Эксплуатация и обслуживание объектов добычи газа, газоконденсата и подзем-

ных хранилищ

форма обучения: очная, очно-заочная Фонд оценочных средств разработан в соответствии с утвержденным учебным планом от 22.04.2019 ги требованиями ОПОП ВО по направлению подготовки 21.03.01 «Нефтегазовое дело», профиль Эксплуатация и обслуживание объектов добычи газа, газоконденсата и подземных хранилищ к результатам освоения дисциплины Основы строительства скважин.

Фонд оценочных средств рассмотрен на заседании кафедры Транспорта и технологий нефтегазового комплекса

Протокол № 9 от «15» мая 2019 г.

Заведующий кафедрой

А.В. Козлон

СОГЛАСОВАНО:

Заведующий выпускающей кафедрой

А.В. Козлов

«15» мая 2019 г.

Фонд оценочных средств разработал:

Занкиев М.М.. к.т.н., доцент кафедры ТТНК

Код и наименование компетенции	Код и наименование индикатора достижения компетенции (ИДК)	Код и наименование результата обучения по дисциплине (модулю)			
ПКС-1 способность осуществлять и корректировать технологические процессы нефтегазового производства в соответствии с выбранной сферой профессиональной деятельности	ПКС-1.1 Осуществляет выбор и систематизацию информации о технологических процессах нефтегазового производства	Знать (31): перечень информации необходимой для строительства скважины Уметь (У1): верно определять конструкцию скважин для конкретных геологических условий Владеть (В1): навыками работы с нормативной техниче-			
ПКС-11 Готовность участвовать в работе научных конференций и семинаров в соответствии с выбранной сферой профессиональной деятельности	ПКС-11.2 Составляет научно- обоснованные доклады по пробле- мам в нефтегазовой отрасли	ской документацией Знать (32): основные технологические процессы строительства скважин Уметь (У2): верно подбирать режимные параметры и показатели бурения Владеть (В2): навыками составления научных докладов			
ПКС-12 Способность выполнять работы по проектированию технологических процессов нефтегазового производства в соответствии с выбранной сферой профессиональной деятельности	ПКС-12.1 — Осуществляет сбор, анализ и систематизацию исходных данных для проектирования	Знать (33): виды профилей скважин; Уметь (У3) верно выбрать и рассчитать профиль ствола скважины для конкретных геологических условий Владеть (В3): навыками составления проектных документов на строительство скважины			

2. Формы аттестации по дисциплине

2.1. Форма промежуточной аттестации: экзамен.

Способ проведения промежуточной аттестации: тестирование, решение практических заданий, теоретический коллоквиум

2.2. Формы текущей аттестации:

Таблица 2.1

	таолица 2.1
№	Форма обучения
Π/Π	ОЗФО
1	Тестирование
2	Теоретический коллоквиум
4	Вопросы для промежуточной аттестации по дисциплине

3. Результаты обучения по дисциплине, подлежащие проверке при проведении текущей и промежуточной аттестации

Таблица 3.1

	T ~		Т		Таблица 3.1		
	Структурные элементы дисци-			Оценочные средства			
No]	плины/модуля	Код результата обу-				
п/п	Номер	Дидактические еди-	чения по дисци-	Текущая атте-	Промежуточная		
11/11	раздела	ницы (предметные	плине/модулю	стация	аттестация		
		темы)					
		Общие сведения о	ПИС 1 1	экзамен	тестирование, ре-		
		бурении нефтяных и	ПКС-1.1		шение практиче-		
1	1	газовых скважин	ПКС-11.2		ских заданий, тео-		
			ПКС-12.1		ретический коллок виум		
					виум		
		Физико-		экзамен	тестирование, ре-		
		механические	HIC 1 1		шение практиче-		
		свойства горных	ПКС-1.1		ских заданий, тео-		
2	2	пород и процесс их	ПКС-11.2		ретический колло- квиум		
		разрушения при	ПКС-12.1		KBH y M		
		бурении					
		71					
		Технологический	ПІС 1 1	экзамен	тестирование, ре-		
		инструмент для	ПКС-1.1		шение практиче-		
3	3	строительства	ПКС-11.2		ских заданий, тео- ретический колло-		
		скважин	ПКС-12.1		квиум		
					KBHYM		
		Оборудование для	ПИС 1 1	экзамен	тестирование, ре-		
		бурения нефтяных и	ПКС-1.1		шение практиче-		
4	4	газовых скважин	ПКС-11.2		ских заданий, теоретический колло-		
			ПКС-12.1		квиум		
		Режимные	ПКС-1.1	экзамен	тестирование, ре-		
		параметры и	ПКС-1.1		шение практиче-		
5	5	показатели бурения	ПКС-11.2		ских заданий, теоретический колло-		
			11KC-12.1		квиум		
					Ť		
		Буровые	ПКС-1.1	экзамен	тестирование, ре-		
		промывочные	ПКС-1.1		шение практиче-		
6	6	жидкости	ПКС-11.2		ских заданий, теоретический колло-		
			11IXC-12.1		квиум		
					·		
		Направленное	ПКС-1.1	экзамен	тестирование, ре-		
		бурение скважин	ПКС-1.1		шение практиче- ских заданий, тео-		
7	7		ПКС-11.2		ретический колло-		
			1110-12.1		квиум		
					·		
		Осложнения и	ПКС-1.1	экзамен	тестирование, ре-		
		аварии в процессе	ПКС-11.2		шение практиче- ских заданий, тео-		
8	8	бурения	ПКС-12.1		ретический колло-		
			111.0 12.1		квиум		
	_						
9	9	Крепление скважин	ПКС-1.1	экзамен	тестирование, ре-		

			ПКС-11.2 ПКС-12.1		шение практиче- ских заданий, тео- ретический колло- квиум
10	10	Вскрытие продуктивного пласта	ПКС-1.1 ПКС-11.2 ПКС-12.1	экзамен	тестирование, решение практических заданий, теоретический коллоквиум
11	11	Проектирование технологии бурения скважин	ПКС-1.1 ПКС-11.2 ПКС-12.1	экзамен	тестирование, решение практических заданий, теоретический коллоквиум

4. Фонд оценочных средств

- 4.1. Фонд оценочных средств, позволяющие оценить результаты обучения по дисциплине, включает в себя оценочные средства для текущей аттестации и промежуточной аттестации.
- 4.2. Фонд оценочных средств для текущей аттестации включает:
 - перечень тестовых вопросов к первой текущей аттестации 50 шт. (Приложение 1);
 - перечень тестовых вопросов ко второй текущей аттестации 60 шт. (Приложение 2);
 - комплект задач для третьей текущей аттестации 4 шт (Приложение 3);
- 4.3. Фонд оценочных средств для итоговой аттестации включает:

Вопросы для промежуточной аттестации (экзамен) по дисциплине – 82 шт., размещены в Приложении 4.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Перечень тестовых вопросов к первой текущей аттестации

- 1. Каким документом определяется порядок организации и производства работ на одном объекте нескольких подразделений одной организации, эксплуатирующей ОПО?
- А) Регламентом об организации безопасного производства работ, утвержденным руководителем этой организации (п.5 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - Б) Положением о производственном контроле организации.
 - В) Нарядом-допуском, оформленным техническим руководителем организации.
- Γ) Производственным заданием, выданным руководителем организации или лицом, его замещающим.
 - Д) Графиком взаимодействия, согласованным с вышестоящей организацией.
- 2. Кем утверждается перечень работ, осуществляемых по наряду-допуску, порядок оформления нарядов-допусков, перечни должностей специалистов, имеющих право выдавать и утверждать наряды-допуски?
 - А) Руководителем организации.
- Б) Техническим руководителем организации (абз.2 п.6 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - В) Специалистом по охране труда.
 - Г) Представителем территориальных органов Ростехнадзора.
- 3. По какому принципу должны быть идентифицированы ОПО при разведке и обустройстве нефтяных, газовых и газоконденсатных месторождений, содержащих сернистый водород и другие вредные вещества?
 - А) По радиусам возможных выбросов и утечек паров и газов.
 - Б) По уровням потенциальной и реальной угроз безопасности работников.

- В) По наличию в технологическом процессе агрессивных компонентов, вызывающих коррозию металла.
- Г) По классам опасности возможных выбросов и утечек паров и газов в атмосферу (п.18 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

4. Что допускается в пределах территории буферной зоны?

- А) Функционирование спортивных сооружений, дошкольных, школьных, лечебнопрофилактических и оздоровительных учреждений.
- Б) Остановка и стоянка транзитного пассажирского железнодорожного и любого автомобильного транспорта на дорогах общего пользования.
- В) Строительство производственных и иных объектов, не связанных с разработкой месторождения.
- Г) Размещение в вахтовых поселках рабочих, работающих на месторождении, при условии выполнения всех проектных решений по обустройству месторождения (абз.4 п.1146 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

5. Какое требование установлено к освещению в зонах работ на открытых площадках в ночное время?

- А) Освещенность площадок должна составлять не менее 100 лк.
- Б) Применение ручных светильников с аккумуляторами в ночное время не допускается.
- В) Необходимо предусматривать комбинированное освещение, используя для местного освещения галогенные лампы.
- Г) Необходимо предусматривать стационарное аварийное или эвакуационное освещение (п.30 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

6. С учетом чего должен производиться выбор вида освещения производственных и вспомогательных помешений?

- А) С учетом максимального использования естественного освещения (абз.3 п.30 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - Б) С учетом минимального использования естественного освещения.
 - В) С учетом режима экономии электроэнергии.

Г) С учетом оптимальной нагрузки на источники электроэнергии.

7. Чем должны оборудоваться объекты, для обслуживания которых требуется подъем рабочего на высоту?

- А) При подъеме на высоту до $1,0\,\mathrm{m}$ ступенями, а на высоту выше $1,0\,\mathrm{m}$ лестницами с перилами.
- Б) При подъеме на высоту до $0.75 \, \mathrm{m}$ настилом с планками, а на высоту выше $0.75 \, \mathrm{m}$ ступенями.
- В) При подъеме на высоту до 1,5 м ступенями, а на высоту выше 1,5 м лестницами с перилами.
- Γ) При подъеме на высоту до 0,75 м ступенями, а на высоту выше 0,75 м лестницами с перилами (п.31 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

8. Из каких материалов изготавливается настил для рабочих площадок, расположенных на высоте?

- А) Из металлических листов, исключающих возможность скольжения.
- Б) Из досок толщиной не менее 40 мм.
- В) Из металлических листов, исключающих возможность скольжения, или из досок толщиной не менее 40 мм (п.34 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - Г) Из пруткового (круглого) проката.
- Д) При наличии перил на площадках допускается настил из гладких металлических листов.

9. С какой периодичностью следует испытывать предохранительные пояса и фалы статической нагрузкой?

- А) Не реже одного раза в год.
- Б) Не реже одного раза в квартал.
- В) Не реже одного раза в три года.
- Г) Не реже двух раз в год.

Комментарий эксперта: ни один из предложенных вариантов не является верным, т.к. в соответствии с п.36 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101, предохранительные пояса и фалы следует испытывать не реже чем один раз в 6 месяцев статической нагрузкой.

- 10. В каком случае допускается временное применение деревянных настилов из досок толщиной не менее 40 мм при ведении работ на пожаровзрывоопасных производствах (установках подготовки нефти, резервуарных парках)?
 - А) В случае выполнения аварийно-спасательных работ.
- Б) В случае ведения работ с лесов во время ремонта полностью остановленных оборудования и аппаратов (абз.2 п.37 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - В) Временное применение деревянных настилов не допускается.
 - Г) В случае ликвидации утечек опасных жидкостей.
 - Д) В случае ввода в эксплуатацию нового оборудования и аппаратов.
- 11. Где должны находиться запорные, отсекающие и предохранительные устройства, устанавливаемые на нагнетательном и всасывающем трубопроводах насоса или компрессора?
- А) На максимально приближенном расстоянии к насосу (компрессору) (п.60 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - Б) В помещении пульта управления насосами (компрессорами).
 - В) На расстоянии не менее 100 диаметров трубопровода.
 - Г) Нормативными документами не регламентируется.
 - 12. Каковы условия опрессовки технологических трубопроводов после их монтажа?
 - А) В любом случае давление опрессовки должно составлять 1,1 рабочего давления.
 - Б) В любом случае давление опрессовки должно быть не менее 1,15 рабочего давления.
 - В) Давление опрессовки должно быть равно рабочему давлению.
- Г) Условия опрессовки устанавливаются проектной документацией, а также нормативнотехническими документами в области промышленной безопасности (п.63 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- 13. Кем определяются критерии вывода из эксплуатации оборудования, инструментов, контрольно-измерительных приборов?
- А) Организацией-изготовителем (абз.2 п.67 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

- Б) Ростехнадзором или его территориальным органом.
- В) Эксплуатирующей организацией или ее структурным подразделением.
- Г) Поставщиком оборудования.

14. Кем выполняются работы по определению возможности продления сроков безопасной эксплуатации технических устройств, оборудования и сооружений?

- А) Поставщиком оборудования.
- Б) Экспертной организацией (п.68 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - В) Организацией-изготовителем.
 - Г) Территориальным органом Ростехнадзора.

15. Каким образом производится резка талевых канатов?

- А) С использованием электросварки, имеющей надежное заземление.
- Б) С использованием специальных приспособлений и применением защитных очков (масок) (п.76 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - В) С использованием любой технологической резки.
 - Г) С использованием разрывной машины.

16. От чего зависит частота осмотров каната?

- А) От характера и условий работы (п.73 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
 - Б) От рекомендаций экспертных организаций.
 - В) От требований, установленных в нормативных документах.
 - Г) От рекомендаций завода-изготовителя.

17. Какое устройство следует предусматривать для ремонта коммутационной аппаратуры в распределительном устройстве буровой установки?

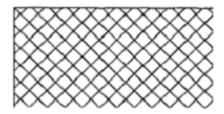
- А) Блокиратор.
- Б) Линейный разъединитель (п.84 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

- В) Электрический выключатель.
- Г) Прерыватель.
- Д) Любое устройство, размыкающее электрическую цепь.

18. Какое напряжение должно применяться для питания переносных электрических светильников, используемых при работах в особо неблагоприятных условиях и наружных установках?

- А) Не выше 127 В.
- Б) Не выше 50 В.
- В) Не выше 12 В (п.85 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

19. Кто должен обслуживать электрооборудование установки?


- А) Электротехнический персонал с группой по электробезопасности не ниже III.
- Б) Электротехнический персонал с группой по электробезопасности не ниже II.
- В) Электротехнический персонал, имеющий соответствующую квалификацию и допуск к работе (п.562 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

20. Разрешается ли последовательное соединение между собой заземляющих устройств разных зданий, сооружений, установок при помощи одного заземляющего проводника?

- А) Допускается.
- Б) Допускается при условии, что общее сопротивление заземляющего проводника не превышает 20 Ом.
- В) Не допускается (п.86 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Γ) Не допускается, за исключением аппаратов или резервуаров, установленных в одном обваловании.
- 21. При каком условии рабочие бригады допускаются к выполнению специальных работ (передвижке буровой установки, монтажу мобильных буровых установок, ремонтным работам повышенной сложности)?
- А) При прохождении стажировки у опытных специалистов и проверке знаний по специальности и охране труда.

- Б) При прохождении дополнительного обучения и получении допуска к самостоятельной работе по основной и совмещаемой профессиям (п.106 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) При прохождении стажировки у опытных специалистов и получении письменного разрешения на допуск к работам у технического руководителя предприятия.
- Γ) При прохождении обучения, проводящегося по месту основной работы, и сдаче соответствующего экзамена.

22. Какой класс взрывоопасной зоны представлен на рисунке?

- А) Класс взрывоопасности зона 0.
- Б) Класс взрывоопасности зона 1 (Условные обозначения классов взрывоопасных зон приложение 3 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Класс взрывоопасности зона 2.

23. В каком случае запрещается приступать к выполнению работ по строительству скважин?

- А) В случае, если нет в наличии проектно-сметной документации, разработанной и утвержденной в установленном порядке.
- Б) В случае, если нет согласования трасс транспортировки бурового оборудования с соответствующими организациями, условий пересечения линий электропередач, железнодорожных магистралей, магистральных трубопроводов (п.989 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) В случае, если не заключены договоры на производство работ с подрядчиками (субподрядчиками) (п.989 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) Во всех вышеперечисленных случаях приступать к строительству скважин запрещено
- 24. Кем осуществляется надзор за ходом строительства скважин, качеством выполнения работ, уровнем технологических процессов и операций, качеством используемых матери-

алов и технических средств, соблюдением безопасных условий труда?

- А) Проектной организацией.
- Б) Региональным центром Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий.
- В) Пользователем недр (заказчиком), организацией, осуществляющей производство буровых работ, и другими субъектами хозяйственной деятельности, уполномоченными пользователем недр (п.108 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) Территориальным органом Ростехнадзора.
- 25. В каком случае строительство скважин можно производить без применения дополнительных мер безопасности?
- А) В случае строительства скважин в многолетнемерзлых породах.
- Б) В случае строительства скважин на кустовых площадках.
- В) В случае строительства скважин на месторождениях с содержанием в нефти (газе) 3% об. Сероводорода (п.109 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Γ) Во всех вышеперечисленных случаях строительство необходимо производить с применением дополнительных мер безопасности.

26. При каких условиях допускается повторное использование рабочего проекта при бурении группы скважин на идентичных по геолого-техническим условиям площадях?

- А) При одинаковых проектных глубинах по стволу скважин.
- Б) При одинаковом назначении и конструкции скважин.
- В) При отличии плотности бурового раствора от проектной в пределах ± 0.3 г/см³.
- Г) При идентичности горно-геологических условий проводки и условий природопользования.
- Д) При выполнении всех вышеперечисленных условий (п.111 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

27. Сколько стадий защиты от возникновения открытых фонтанов должен обеспечивать рабочий проект на бурение скважин?

- А) В зависимости от характеристик скважины.
- Б) До пяти стадий защиты.

- В) Три стадии защиты (п.271 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) Две стадии защиты.

28. Каким должно быть расстояние между группами скважин на кустовой площадке?

- А) Не менее 15 м (п.2.1 РД 08-435-02 Инструкция по безопасности одновременного производства буровых работ, освоения и эксплуатации скважин на кусте, утвержденного постановлением Госгортехнадзора России от 11.03.2002 N 14).
- Б) Не менее 10 м.
- В) Не менее 7 м.
- Г) Не менее 5 м.

29. Каким должно быть расстояние между кустами или кустовой площадкой и одиночной скважиной?

- А) Не менее 20 м.
- Б) Не менее 30 м.
- В) Не менее 40 м.
- Γ) Не менее 50 м (п.2.5 РД 08-435-02 Инструкция по безопасности одновременного производства буровых работ, освоения и эксплуатации скважин на кусте, утвержденного постановлением Госгортехнадзора России от 11.03.2002 N 14).

30. Какое общее количество скважин в группе может быть размещено на кустовой пло-шалке?

- А) Не более 3.
- Б) Не более 6.
- В) Не более 8 (п.2.1 РД 08-435-02 Инструкция по безопасности одновременного производства буровых работ, освоения и эксплуатации скважин на кусте, утвержденного постановлением Госгортехнадзора России от 11.03.2002 N 14).
- Γ) Общее количество скважин устанавливается заказчиком по согласованию с территориальным управлением Ростехнадзора.

31. Какое расстояние должно быть между устьями скважин при их размещении на кустовых площадках вечномерзлых грунтов?

- А) Должно быть равно радиусу растепления пород вокруг устья скважины.
- Б) Должно быть не менее 50 м.
- В) Должно быть не менее двух радиусов растепления пород вокруг устья скважины (п.329 Фе-

деральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

Г) Должно быть не менее 100 м.

32. Кто разрабатывает и утверждает документацию по организации безопасного производства работ на кустовой площадке?

- А) Представитель проектной организации.
- Б) Пользователь недр или его представитель, наделенный полномочиями в установленном порядке (п.330 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Представитель организации, осуществляющей строительство нефтяных и газовых скважин.
- Г) Представитель территориального органа Ростехнадзора.

33. На каком расстоянии от устья бурящейся скважины должны быть расположены служебные и бытовые помещения?

- А) На расстоянии, равном высоте вышки плюс 10 м (п.2.7 РД 08-435-02 Инструкция по безопасности одновременного производства буровых работ, освоения и эксплуатации скважин на кусте, утвержденного постановлением Госгортехнадзора России от 11.03.2002 N 14).
- Б) На расстоянии, равном высоте вышки плюс 5 м.
- В) На расстоянии, равном высоте вышки.
- Г) На расстоянии 3 м от кустовой площадки.
- 34. В каком случае при освоении нефтяных месторождений в проектной документации должны быть предусмотрены дополнительные меры безопасности при испытании обсадных колонн на герметичность и обвязке устьев скважин противовыбросовым оборудованием?
- А) При освоении нефтяных месторождений с газовым фактором более $200 \text{ м}^3/\text{т}$ (п.1.1 РД 08-435-02 Инструкция по безопасности одновременного производства буровых работ, освоения и эксплуатации скважин на кусте, утвержденного постановлением Госгортехнадзора России от 11.03.2002 N 14).
- Б) При освоении нефтяных месторождений, содержащих от 10 до 30 млн.т нефти.
- В) При освоении нефтяных месторождений с тектонически слабонарушенными структурами, продуктивные пласты которых характеризуются выдержанностью толщин и коллекторских свойств по площади и разрезу.
- Γ) При освоении нефтяных месторождений, содержащих нефть с растворенным газом и свободный газ над нефтью, с газовым фактором более $100 \text{ м}^3/\text{т}$.
- 35. Что должна обеспечивать прочность кондукторов, технических колонн и установлен-

ного на них противовыбросового оборудования?

- А) Сохранение целостности при воздействии гидростатического давления столба бурового раствора средней плотности.
- Б) Противостояние воздействию максимальных сжимающих нагрузок в случае открытого фонтанирования или поглощения с падением уровня бурового раствора, а также в интервалах залегания склонных к текучести пород (п.121 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Герметизацию устья скважины в случаях газоводонефтепроявлений, выбросов и открытого фонтанирования с учетом превышения дополнительного давления, необходимого для глушения скважины, не менее чем на 5%.
- Г) Все вышеперечисленное.
- 36. Каким документом устанавливаются периодичность и способы проверки состояния обсадных колонн по мере их износа и необходимые мероприятия по обеспечению безопасной проводки и эксплуатации скважин?
- А) Методическими указаниями проектной организации.
- Б) Рабочим проектом или иной документацией, содержащей аналогичные требования (п.123 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Регламентом, разработанным в соответствии с проектом.
- Г) Правилами безопасности в нефтяной и газовой промышленности.
- 37. При каких атмосферных явлениях разрешается проводить работы на высоте по монтажу, демонтажу и ремонту вышек и мачт?
- А) При тумане с горизонтальной видимостью 15 м.
- Б) При скорости ветра 5 м/с (п.128 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) При температуре воздуха ниже пределов, установленных в данном регионе.
- Г) Во время грозы, ливня или сильного снегопада.

38. Разрешается ли рабочим находиться на разной высоте вышки при выполнении работы?

- А) Разрешается при выполнении общей работы (п.129 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Б) Разрешается, если количество работников не более двух.

- В) Запрещается.
- Г) Разрешается при выполнении разного вида работ в присутствии руководителя работ.

39. После выполнения какого условия работникам разрешается приступить к демонтажу буровой установки на электроприводе?

- А) После получения устного подтверждения главного энергетика организации об отключении установки от электросети.
- Б) После подачи звукового сигнала оператором буровой установки о снятии напряжения на установке.
- В) После получения письменного подтверждения работника, ответственного за эксплуатацию электрооборудования, об отключении установки от электросети (п.130 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) После получения информации от вышкомонтажника-электромонтера о снятии напряжения на буровой установке.
- 40. В каком случае оснащение буровых установок верхним приводом необязательно?
- А) В случае вскрытия пластов с ожидаемым содержанием в пластовом флюиде сероводорода свыше 6% (об.).
- Б) В случае набора угла с радиусом кривизны менее 30 м в наклонно-направленных скважинах.
- В) В случае бурения скважин с глубиной менее 4500 м (абз.2 п.136 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) В случае бурения горизонтального участка ствола скважины длиной более 300 м в скважинах глубиной по вертикали более 3000 м.

41. Какую освещенность роторного стола должны обеспечивать светильники буровых установок?

- А) 100 лк (абз.2 п.137 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Б) 75 лк.
- В) 30 лк.
- Г) 10 лк.

42. Какую освещенность должны обеспечивать светильники на пути движения талевого блока?

А) 100 лк.

- Б) 30 лк (абз.3 п.137 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) 75 лк.
- Г) 10 лк.

43. Откуда должен осуществляться пуск буровых насосов в работу?

- А) С пульта бурильщика.
- Б) С местного поста управления (п.138 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) С пульта оператора, осуществляющего контроль технологического процесса.
- Г) Одновременно с пульта бурильщика и местного поста управления.
- 44. При достижении какого значения нижнего предела воспламенения смеси воздуха с углеводородом должно быть обеспечено полное отключение оборудования и механизмов?
- А) При достижении 20% от нижнего предела воспламенения смеси воздуха с углеводородами.
- Б) При достижении 30% от нижнего предела воспламенения смеси воздуха с углеводородами.
- В) При достижении 40% от нижнего предела воспламенения смеси воздуха с углеводородами.
- Г) При достижении 50% от нижнего предела воспламенения смеси воздуха с углеводородами (п.142 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

45. Должны ли буровые насосы оборудоваться компенсаторами давления? Если да, то какие требования при этом должны соблюдаться?

- А) Установка на буровых насосах компенсаторов давления необязательна в том случае, если проводятся мероприятия по обеспечению равномерности подачи промывочной жидкости.
- Б) Компенсаторы давления должны устанавливаться только на трех поршневых буровых насосах, при этом компенсаторы должны быть заполнены воздухом или инертным газом, с приспособлениями для контроля давления в компенсаторах.
- В) На всех буровых насосах должны быть установлены компенсаторы давления, заполняемые воздухом или инертным газом, с конструкцией, предусматривающей установку манометра для измерения давления в газовой полости и обеспечивающей возможность сбрасывания давления до нуля (п.150 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) На всех буровых насосах должны быть установлены гидрокомпенсаторы давления, заполня-

емые водой, с приспособлениями для контроля давления в компенсаторах.

46. Что должно быть указано на корпусах оборудования, входящего в состав талевой системы (кронблок, талевый блок, крюк)?

- А) Дата изготовления.
- Б) Допускаемая грузоподъемность (п.154 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Материал изготовления.
- Г) Сроки следующего испытания.

47. Каким давлением производится испытание пневматической системы буровой установки на месте производства работ (после монтажа, ремонта)?

- А) При проведении испытаний пневматической системы буровой установки на заводе-изготовителе испытания на месте производства работ не проводятся.
- Б) Давление испытания должно быть 1,25 рабочего давления.
- В) Давление испытания должно быть 1,5 рабочего давления.
- Γ) Давление испытания должно быть 1,25 рабочего давления, но не менее 3 кгс/см 2 (п.157 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

48. При каком превышении давления должны срабатывать предохранительные устройства насоса?

- А) При давлении, превышающем на 3% рабочее давление насоса, соответствующего диаметру установленных цилиндровых втулок.
- Б) При давлении, превышающем на 20% рабочее давление насоса, соответствующего диаметру установленных цилиндровых втулок.
- В) При давлении, превышающем на 15% рабочее давление насоса, соответствующего диаметру установленных цилиндровых втулок.
- Г) При давлении, превышающем на 10% рабочее давление насоса, соответствующего диаметру установленных цилиндровых втулок (п.161 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

49. Где должен быть установлен основной пульт для управления превенторами и гидравлическими задвижками?

А) На расстоянии не менее 10 м от устья скважины в удобном и безопасном месте (абз.2 п.258 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N

101).

- Б) На расстоянии не менее 8 м от устья скважины в удобном и безопасном месте.
- В) На расстоянии не менее 6 м от устья скважины в удобном и безопасном месте.
- Г) Основной пульт должен быть установлен непосредственно возле пульта бурильщика.
- 50. Какие данные должны быть указаны на металлической табличке, укрепляемой на видном месте мачты агрегата по ремонту скважин?
- А) Наименование организации, владеющей данным агрегатом, и заводской номер.
- Б) Грузоподъемность и дата очередного технического освидетельствования (абз.5 п.1025 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N В) Грузоподъемность и дата последнего технического освидетельствования.

Критерии оценки:

за каждый правильный ответ – 0,6 балла; за неправильный ответ – 0 баллов.

Максимальное количество баллов – 30.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА

(ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

ТОМЕНСКИЙ НИПРИСТВИА И И И ИХИНИВЕРСИТЕТ.

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Перечень тестовых вопросов ко второй текущей аттестации

1. В каком случае следует прекратить работы на соседних блоках всех эксплуатационных скважин?

- А) В случае передвижки вышечно-лебедочного блока на новую точку (позицию).
- Б) В случае испытания вышек.
- В) В случае ведения сложных аварийных работ на скважине.
- Г) Во всех вышеперечисленных случаях работы на соседних блоках должны быть прекращены (п.334 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

2. Какие показатели должны постоянно контролироваться в процессе проходки ствола скважины?

- А) Расход бурового раствора на входе и выходе из скважины и давление в манифольде буровых насосов (п.181 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Б) Взаимное расположение стволов бурящейся и ранее пробуренных соседних скважин.
- В) Азимут и зенитный угол ствола скважины.
- Γ) Пространственное расположение ствола скважины и дифференциальное давление в системе скважина пласт.

3. Какие показатели должны контролироваться при бурении наклонно-направленных и горизонтальных скважин?

- А) Плотность, структурно-механические и реологические свойства бурового раствора и пространственное расположение ствола скважины.
- Б) Расход бурового раствора на входе и выходе из скважины, давление в манифольде буровых насосов и зенитный угол ствола скважины.
- В) Азимут, зенитный угол ствола скважины, пространственное расположение ствола скважины, взаимное расположение стволов бурящейся и ранее пробуренных соседних скважин (п.182 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Γ) Крутящий момент на роторе при роторном способе бурения, давление в манифольде буровых насосов и азимут ствола скважины.

4. В каком случае разрешается проводить спуско-подъемные операции?

- А) В случае неисправности спуско-подъемного оборудования и инструмента.
- Б) В случае скорости ветра, равной 15 м/с (абз.6 п.200 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) В случае отсутствия или неисправности ограничителя подъема талевого блока, ограничителя допускаемой нагрузки на крюке.
- Г) В случае неполного состава вахты для работ на конкретной установке.
- Д) В случае тумана и снегопада.
- Е) Во всех вышеперечисленных случаях запрещается проводить спуско-подъемные операции.

5. Какое из нижеприведенных действий допускается при проведении спуско-подъемных операций?

- А) Находиться в радиусе (зоне) действия автоматических и машинных ключей, рабочих и страховых канатов.
- Б) Открывать и закрывать элеватор только при полной остановке талевого блока (абз.3 п.202 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Подавать бурильные свечи с подсвечника и устанавливать их без использования специальных приспособлений.
- Г) Пользоваться перевернутым элеватором.

6. С какой периодичностью буровая бригада должна проводить профилактический осмотр подъемного оборудования (лебедки, талевого блока, крюка, штропов, талевого каната, блокировок)?

- А) Каждую смену (п.201 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Б) Каждый день.
- В) Каждую неделю.
- Г) Каждый месяц.

7. Допускается ли отклонение от проектной величины плотности бурового раствора (освобожденного от газа), закачиваемого в скважину в процессе циркуляции?

- А) Допускается, но не более чем на 0.5 г/см^3 .
- Б) Допускается только при закачивании отдельных порций утяжеленного раствора, увеличение плотности не более чем $0.05 \, \text{г/см}^3$.
- В) Допускается не более чем на $0.04 \, \text{г/см}^3$.
- Γ) Не допускается ни в каком случае (п.215 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

8. Чему должна быть равна расчетная продолжительность процесса цементирования обсадной колонны?

А) Не должна превышать 95% времени начала загустевания тампонажного раствора по лабораторному анализу.

- Б) Не должна превышать 90% времени начала загустевания тампонажного раствора по лабораторному анализу.
- В) Не должна превышать 75% времени начала загустевания тампонажного раствора по лабораторному анализу (п.228 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) Должна быть равна времени загустевания тампонажного раствора.

9. Каким давлением необходимо опрессовывать цементировочную головку?

- А) Давлением, в 1,25 раза превышающим ожидаемое рабочее давление.
- Б) Давлением, в 1,5 раза превышающим максимальное расчетное рабочее давление (п.238 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Давлением, в 1,75 раза превышающим ожидаемое рабочее давление.
- Г) Давлением, в 2 раза превышающим максимальное расчетное рабочее давление.

10. С учетом каких параметров производятся выбор обсадных труб и расчет обсадных колонн на стадиях строительства и эксплуатации скважин?

- А) С учетом максимальных ожидаемых избыточных наружных и внутренних давлений при частичном замещении раствора газожидкостной смесью, снижении уровня, а также осевых нагрузок на трубы.
- Б) С учетом максимальных ожидаемых избыточных наружных и внутренних давлений при частичном замещении бурового раствора пластовым флюидом и агрессивности флюида.
- В) С учетом минимальных ожидаемых наружных и внутренних давлений при полном замещении раствора пластовым флюидом, снижении уровня осевых нагрузок на трубы.
- Г) С учетом максимальных ожидаемых избыточных наружных и внутренних давлений при полном замещении раствора пластовым флюидом или газожидкостной смесью, снижении уровня, а также осевых нагрузок на трубы и агрессивности флюида (п.121 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

11. Что является основной причиной возникновения газонефтеводопроявлений?

- А) Значительное повышение пластичности, снижение прочности пород, увлажнение термомеханического воздействия (колебаний противодавления и температуры массива).
- Б) Упругое структурно-адсорбционное расширение пород стенок скважины, обусловленное их анизотропией, повышенной фильтрационной особенностью, всасыванием свободной воды и физико-механическим взаимодействием ее с частицами породы.
- В) Поступление пластового флюида в ствол скважины вследствие превышения пластовым давлением забойного (п.2.1.1 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).
- Г) Образование толстых корок (отложение твердой фазы раствора) на стволе скважины при разрезе высокопроницаемых пород, интенсивно поглощающих жидкую фазу раствора.

12. Какие действия включает в себя первая стадия защиты скважины при угрозе газонефтеводопроявления?

А) Предотвращение поступления пластового флюида в скважину за счет использования гидро-

статического давления столба жидкости и противовыбросового оборудования.

- Б) Предотвращение притока пластового флюида в скважину за счет поддержания достаточного гидростатического давления столба жидкости (абз.2 п.2.4.3 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).
- В) Предотвращение поступления пластового флюида в скважину за счет снижения гидростатического давления столба раствора.
- Г) Ликвидация газонефтеводопроявлений стандартными методами.

13. Что необходимо предпринять в процессе подъема колонны бурильных труб для предупреждения газонефтеводопроявлений?

- А) Следует производить долив бурового раствора в скважину (п.3.9 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).
- Б) Ввести в промывочную жидкость смазывающие добавки.
- В) Ввести промывочные жидкости, инертные по отношению к горным породам.
- Г) Обеспечить большую скорость восходящего потока жидкости в кольцевом пространстве.

14. Какой должна быть высота подъема тампонажного раствора над кровлей продуктивных горизонтов, а также устройством ступенчатого цементирования или узлом соединения верхних секций обсадных колонн в нефтяных и газовых скважинах?

- А) Не менее 100 и 440 м соответственно.
- Б) Не менее 110 и 460 м соответственно.
- В) Не менее 130 и 480 м соответственно.
- Г) Не менее 150 и 500 м соответственно (п.4.3 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).

15. В каком случае запрещается производить спуск технических и эксплуатационных колонн в скважину?

- А) Если скважина осложнена поглощениями бурового раствора с одновременным флюидопроявлением.
- Б) Если скважина осложнена осыпями и обвалами.
- В) Если скважина осложнена затяжками и посадками бурильной колонны.
- Г) Спуск технических и эксплуатационных колонн во всех вышеперечисленных случаях запрещен до ликвидации осложнений (п.4.4 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).

16. Исходя из каких требований производится выбор манометров для установки на блоках дросселирования и глушения?

А) Манометры должны иметь верхний предел диапазона измерений, равный давлению совместной опрессовки обсадной колонны и противовыбросового оборудования.

- Б) Манометры должны иметь верхний предел диапазона измерений, равный двукратному давлению совместной опрессовки.
- В) Манометры должны иметь верхний предел диапазона измерений, на 30% превышающий давление совместной опрессовки обсадной колонны и противовыбросового оборудования (п.4.16 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).
- Γ) Класс точности манометра должен быть не ниже 1,5, а верхний предел диапазона измерений не менее 40 МПа (400 кгс/см 2).

17. Какое количество шаровых кранов должно быть установлено при вскрытии газовых пластов с аномально высоким давлением сероводородсодержащих горизонтов на буровой установке?

- А) Один, устанавливаемый между рабочей трубой и ее предохранительным переводником.
- Б) Два, один из которых устанавливается между рабочей трубой и вертлюгом, второй между рабочей трубой и ее предохранительным переводником.
- В) Два, один из которых устанавливается между рабочей трубой и предохранительным переводником, второй является запасным.
- Г) Три, один из которых устанавливается между рабочей трубой и вертлюгом, второй между рабочей трубой и ее предохранительным переводником, третий является запасным (абз.2 п.4.19 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).

18. Кем устанавливается периодичность проверки плашечных превенторов на закрытие и открытие?

- А) Буровым предприятием (п.4.23 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).
- Б) Пользователем недр.
- В) Противофонтанной службой.
- Г) Проектной организацией.

19. Кто может быть допущен к работам на скважинах с возможными газонефтеводопроявлениями?

- А) Допускаются бурильщики, прошедшие производственное обучение, инструктаж, получившие допуск к самостоятельной работе.
- Б) Допускаются бурильщики, прошедшие специальное обучение и сдавшие экзамен по правилам безопасности в нефтегазодобывающей промышленности, и имеющие на это удостоверение.
- В) Допускаются бурильщики и специалисты, прошедшие подготовку и проверку знаний по курсу "Контроль скважины. Управление скважиной при газонефтеводопроявлениях" в специализированных учебных центрах (п.3.1 РД 08-254-98 Инструкция по предупреждению газонефтеводопроявлений и открытых фонтанов при строительстве и ремонте скважин в нефтяной и газовой промышленности, утвержденного постановлением Госгортехнадзора России от 31.12.98 N 80).
- Г) Допускаются бурильщики, обученные по специальной программе, аттестованные квалификационной комиссией организации.

20. Кем должны осуществляться работы по ликвидации открытого фонтана?

- А) Работниками буровой организации по специальному плану, разработанному проектной организацией.
- Б) Работниками противофонтанной службы и пожарных подразделений по специальному плану, разработанному штабом (п.287 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Работниками буровой организации по специальному плану, разработанному противофонтанной службой.
- Г) Работниками противофонтанной службы по специальному плану, разработанному пользователем недр.

21. Какие меры из нижеперечисленных входят в комплекс работ по освоению скважин?

- А) Предупреждение прорыва пластовой воды и газа из газовой "шапки" и термогидрогазодинамические исследования по определению количественной и качественной характеристик пласта и его геолого-физических параметров.
- Б) Сохранение, восстановление или повышение проницаемости призабойной зоны и предотвращение неконтролируемых газонефтеводопроявлений и открытых фонтанов.
- В) Исключение закупорки пласта при вторичном вскрытии и сохранение скелета пласта в призабойной зоне.
- Г) В комплекс работ по освоению скважин входят все вышеперечисленные меры (п.300 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

22. Какой документ является основным для производства буровых работ?

- А) Градостроительный кодекс Российской Федерации.
- Б) Проект обустройства месторождения углеводородов.
- В) Рабочий проект на производство буровых работ (раздел XI Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

23. Рабочий проект на производство буровых работ разрабатывается на отдельную скважину или на группу скважин?

- А) Рабочий проект на производство буровых работ разрабатывается только на отдельную скважину.
- Б) Рабочий проект на производство буровых работ разрабатывается на бурение отдельной скважины или на группу скважин, расположенных на одной кустовой площадке или одном месторождении, площади (п.110 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Рабочий проект на производство буровых работ может разрабатываться на группу скважин, расположенных на одном кусте, если есть опыт бурения на данном месторождении.

24. Кто принимает оперативные решения по отклонению от параметров, предусмотренных в рабочем проекте при возникновении в процессе производства буровых работ осложнений (газонефтепроявления, поглощения, обвалы и др.)?

- А) Руководство эксплуатирующей организации (заказчик).
- Б) Проектная организация.
- В) Буровой подрядчик с последующим уведомлением заказчика (п.115 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

25. Какие требования предъявляются к условиям установки подвесного и герметизирующего устройства потайной колонны (хвостовика)?

- А) Требования не нормируются.
- Б) Требования к условиям установки подвесного и герметизирующего устройства потайной колонны (хвостовика) определяется расчетным путем при проектировании конструкции скважины.
- В) Подвесное и герметизирующее устройство потайной колонны (хвостовика) должно устанавливаться выше предыдущей обсадной колонны не менее чем на 75 м для нефтяных скважин и 250 м для газовых скважин (п.120 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

26. Кто устанавливает порядок организации, проведения планового ремонта и обслуживания бурового и энергетического оборудования?

- А) Организация-заказчик с учетом инструкций по эксплуатации, предоставляемых производителем продукции.
- Б) Буровая организация с учетом инструкций по эксплуатации, предоставляемых производителем продукции (п.156 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Служба главного энергетика совместно с буровой организацией.

27. Кто устанавливает нормативные сроки наработки, виды инспекций и дефектоскопии для бурильных труб, ведущих, утяжеленных бурильных труб, переводников, опорноцентрирующих и других элементов бурильной колонны?

- А) Разработчики-проектанты в рабочем проекте производства буровых работ.
- Б) Эксплуатирующая организация по согласованию с надзорными органами.
- В) Эксплуатирующая организация в соответствии с технической документацией заводаизготовителя (абз.2 п.177 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

28. Какие ограничения предусмотрены для перфорации обсадных колонн при проведении ремонтно-изоляционных работ в процессе проводки ствола скважины?

- А) Ограничения не предусмотрены.
- Б) Запрещается перфорация обсадных колонн при проведении ремонтно-изоляционных работ в интервале проницаемых горизонтов.
- В) Запрещается перфорация обсадных колонн при проведении ремонтно-изоляционных работ в интервале возможного разрыва пласта давлением газа, нефти (после вызова их притока) или столба бурового раствора (п.187 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

- 29. Консервация скважин в процессе бурения осуществляется в соответствии с инструкцией о порядке ликвидации, консервации скважин и оборудования, их устьев и стволов. Предусмотрены ли Правилами дополнительные работы при консервации скважин в процессе бурения, кроме требований инструкции?
- А) Да (п.191 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Б) Нет.
- В) Предусмотрены, но только в случае нестандартных ситуаций.
- 30. С какой периодичностью проводится профилактический осмотр подъемного оборудования (лебедки, талевого блока, крюка, крюкоблока, вертлюга, штропов, талевого каната и устройств для его крепления, элеваторов, спайдеров, предохранительных устройств, блокировок и другого оборудования)?
- А) Ежедневно.
- Б) Еженедельно.
- В) Ежесменно с записью в журнале проверки оборудования (п.201 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

31. Можно ли повышать плотность бурового раствора, находящегося в скважине?

- А) Повышать плотность бурового раствора, находящегося в скважине, путем закачивания отдельных порций утяжеленного раствора разрешается.
- Б) Повышать плотность бурового раствора, находящегося в скважине, путем закачивания отдельных порций утяжеленного раствора запрещается (п.218 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).)
- В) Правилами не регламентируется.

32. Требованиям какого документа должны соответствовать свойства тампонажных материалов и формируемого из них цементного камня?

- А) Свойства тампонажных материалов и формируемого из них цементного камня должны соответствовать требованиям стандартов.
- Б) Свойства тампонажных материалов и формируемого из них цементного камня должны соответствовать требованиям, которые устанавливает завод-изготовитель.
- В) Свойства тампонажных материалов и формируемого из них цементного камня должны соответствовать требованиям рабочего проекта (п.222 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

33. Необходим ли лабораторный анализ цемента для условий предстоящего цементирования колонны?

А) Лабораторному анализу подвергается 5% от одной из партий цемента, поступившего на буровую установку. Предварительный лабораторный анализ для условий предстоящего цементирования не проводится.

- Б) В лабораторном анализе цемента для условий предстоящего цементирования колонны нет необходимости.
- В) Применение цемента без проведения предварительного лабораторного анализа для условий предстоящего цементирования колонны запрещается (п.226 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

34. На какое давление должны опрессовываться нагнетательные трубопроводы для цементирования ствола скважины?

- А) В 1,25 раза превышающее максимальное расчетное рабочее давление при цементировании скважины.
- Б) В 1,5 раза превышающее ожидаемое рабочее давление при цементировании скважины (п.239 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) На максимальное расчетное рабочее давление при цементировании скважины.

35. Представители каких организаций включаются в обязательном порядке в комиссию при испытании колонны на герметичность?

- А) Представители от заказчика и надзорных органов.
- Б) Представители буровой организации и природоохранных организаций.
- В) Представитель заказчика (п.245 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

36. Кем разрабатываются инструкции по монтажу и эксплуатации противовыбросового оборудования (далее - ПВО)?

- А) Инструкции по монтажу и эксплуатации ПВО разрабатываются заводом-изготовителем.
- Б) Инструкции по монтажу и эксплуатации ПВО разрабатываются заказчиком (пользователем недр) и согласовываются с Ростехнадзором.
- В) Инструкции по монтажу и эксплуатации ПВО разрабатываются буровой организацией в соответствии с применяемым оборудованием, технологией ведения работ и инструкциями по монтажу, техническому обслуживанию, эксплуатации и ремонту изготовителей (п.250 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

37. Кто выбирает тип ПВО и колонной головки, схему установки и обвязки ПВО, блоков глушения и дросселирования?

- А) Буровая организация при согласовании с противофонтанной службой.
- Б) Заказчик при согласовании с Ростехнадзором.
- В) Проектная организация при согласовании с заказчиком (п.253 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

38. Какой должна быть длина линий сбросов на факелы от блоков глушения и дросселирования?

- А) Не нормируется.
- Б) Для нефтяных скважин:
- с газовым фактором менее $200 \text{ м}^3/\text{т}$ не менее 30 м;
- с газовым фактором более $200 \text{ м}^3/\text{т}$ не менее 100 м.
- (п.254 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора 12.03.2013 N 101).
- В) Для нефтяных скважин:
- с газовым фактором менее $300 \text{ м}^3/\text{т}$ не менее 50 м;
- с газовым фактором более $300 \text{ м}^3/\text{т}$ не менее 200 м.

39. Какой должна быть длина линий сбросов на факелы от блоков глушения и дросселирования для скважин, сооружаемых с насыпного основания и ограниченных площадок?

- А) Определяется проектной документацией.
- Б) Такая же, как для нефтяных скважин на равнине:
- с газовым фактором менее $200 \text{ м}^3/\text{т}$ не менее 30 м;
- с газовым фактором более 200 м³/т не менее 100 м.
- В) Устанавливается подрядчиком по согласованию с заказчиком (абз.7 п.254 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора 12.03.2013 N 101).

40. Какое необходимое количество шаровых кранов на буровой установке при вскрытии коллекторов, насыщенных нефтью и газом?

- А) Один.
- Б) Два (п.260 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) Три.
- Г) Четыре.

41. Какое необходимое количество шаровых кранов на буровой установке при вскрытии газовых пластов с аномально высоким давлением сероводородсодержащих горизонтов?

- А) Один.
- Б) Два.
- В) Три (абз.2 п.260 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) Четыре.

42. Какая техническая документация должна быть на буровой установке на краны шаровые и клапаны обратные?

- А) Руководство по эксплуатации.
- Б) Инструкция с указанием технических характеристик кранов шаровых и клапанов обратных.
- В) Технические паспорта и сведения о проведении дефектоскопии (абз.5 п.260 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

43. С какой частотой проводится опрессовка кранов шаровых и клапанов обратных?

- А) Перед спецработами.
- Б) Перед установкой.
- В) Один раз в 6 месяцев (абз.6 п.260 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

44. С какой периодичностью превенторы должны проверяться на закрытие и открытие?

- А) Перед началом каждой смены.
- Б) Перед началом спецработ.
- В) Периодичность проверки устанавливается буровой организацией, но не реже одного раза в месяц (п.264 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

45. В каких случаях следует производить долив бурового раствора в скважину?

- А) При спуско-подъемных операциях.
- Б) В процессе подъема колонны бурильных труб для предупреждения газонефтеводопроявлений и обвалов стенок скважин (п.275 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- В) При обнаружении газонефтеводопроявлений.

46. В каких случаях производится контроль бурового раствора на газонасыщенность?

- А) При переливе или при увеличении количества бурового раствора.
- Б) Во всех случаях при работе с буровым раствором.
- В) Перед и после вскрытия пластов с аномально высоким пластовым давлением.
- Г) При вскрытии газоносных горизонтов и дальнейшем углублении скважины (п.278 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

47. Каким документом определяются типы резьбовых соединений и резьбовых смазок, применяемых в интервалах интенсивного искривления ствола в конструкциях скважин?

- А) Стандартами буровой организации.
- Б) Техническими регламентами.
- В) Рабочим проектом на производство буровых работ (п.293 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

48. Каким документом устанавливаются требования к технологии и порядок проведения перфорации продуктивного пласта при сниженном уровне или в среде, отличающейся от установленных требований?

- А) Стандартами буровой организации, согласованными с противофонтанной службой (противофонтанной военизированной частью).
- Б) Рабочим проектом на производство буровых работ.

В) Специальным планом, утвержденным пользователем недр (заказчиком) и согласованным с противофонтанной службой (противофонтанной военизированной частью) (абз.4 п.297 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

49. Каковы требования к производству работ по глубинным измерениям в скважинах с избыточным давлением на устье?

- А) Производятся в соответствии с требованиями заказчика.
- Б) Производятся с применением утяжеленного бурового раствора.
- В) Производятся с применением лубрикатора, опрессованного на рабочее давление, установленное изготовителем, а после установки на давление опрессовки колонны (п.304 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).

50. Кем устанавливается порядок проведения работ на кустовых площадках при совмещении во времени различных по характеру работ (бурение, освоение, эксплуатация, монтаж нефтегазодобывающего оборудования и т.д.)?

- А) Министерством природных ресурсов и экологии Российской Федерации.
- Б) Ростехнадзором.
- В) Пользователем недр или его представителем (п.330 Федеральных норм и правил в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности", утвержденных приказом Ростехнадзора от 12.03.2013 N 101).
- Г) Министерством Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий.

Критерии оценки:

за каждый правильный ответ -0.6 балла; за неправильный ответ -0 баллов. Максимальное количество баллов -30.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ» (Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Комплект задач для третей текущей аттестации

Залача 1

По исходным данным представленным в таблице 3.1 требуется определить:

- длину L тангенциального участка и зенитный угол α_3 ствола скважины на проектной глубине;
- величину угла α₃ и длину тангенциального интервала ствола;
- составить чертеж с нанесением на него расчетных параметров.

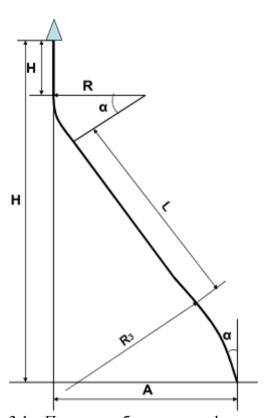


Рисунок 3.1 – Пример s-образного профиля скважины

Таблица 3.1 – Задания для решения по вариантам (вариант задает преподаватель)

Номер варианта:	1	2	3	3	5	6	7	8
глубина спуска	50	50	50	50	50	50	50	50
направления, (м)								
глубина спуска	650	650	650	650	650	650	650	650
кондуктора, (м)								

проектная глубина до	2200	2200	2200	2200	2200	2200	2200	2200
кровли пласта, (м)								
мощность	170	170	170	170	170	170	170	170
продуктивного пласта,								
(M)								
глубина спуска эксплуа-	2600	2600	2600	2600	2600	2600	2600	2600
тационной колонны, (м)	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
проектное смещение на	960	960	960	960	960	960	960	960
кровле пласта, (м)								
радиус кривизны участка	400	600	430	490	410	308	540	460
начального искривления								
R_1 , (M)								
радиус кривизны участка	3900	2900	3000	2800	3200	2700	2600	2500
уменьшения зенитного								
угла <i>R</i> ₃ , (м)								
длина вертикального	550	650	750	450	350	500	700	800
участка H_B , (м)								
зенитный угол в конце	15°	25°	30°	18°	12°	21°	24°	30°
участка начального ис-								
кривления α_1								

Задача 2

По исходным данным представленным в таблице 3.2 требуется определить:

- длину L тангенциального участка и зенитный угол α_3 ствола скважины на проектной глубине;
- величину угла α₃ и длину тангенциального интервала ствола;
- длину эксплуатационного участка профиля, а также его вертикальную и горизонтальную проекции;
- составить чертеж с нанесением на него расчетных параметров.

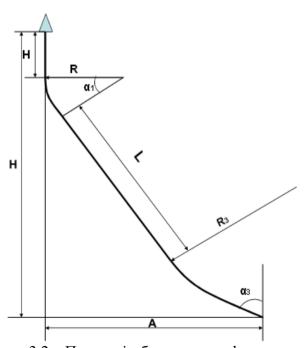


Рисунок 3.2 – Пример ј-образного профиля скважины

Таблица 3.2 – Задания для решения по вариантам (вариант задает преподаватель)

Номер варианта:	1	2	3	4
глубина спуска	50	50	50	50
направления, (м)				
глубина спуска	450	450	450	450
кондуктора, (м)				
проектная глубина до	1700	1920	2150	2700
кровли пласта H , (M)				
мощность	14	10	20	14
продуктивного пласта,				
(M)				
глубина спуска эксплуа-	1715	1930	2070	2715
тационной колонны, (м)				
проектное смещение на	870	940	710	840
кровле пласта A , (M)				
радиус кривизны участ-	400	600	700	300
ка начального искривле-				
ния R_1 , (м)				
радиус кривизны участ-	2000	2200	1960	2070
ка уменьшения зенитно-				
го угла <i>R</i> ₃ , (м)				
длина вертикального	150	100	210	350
участка $H_{B_i}(M)$				
зенитный угол в конце	30°	25°	23°	34°
участка начального ис-				
кривления α_1				
вскрытие пласта произ-	0,5°/10м	0,7°/10м	0,3°/10м	0,4°/10м
водится с уменьшением	,	,		,
зенитного угла с интен-				
сивностью				

Задача 3

По данным таблицы 3.3 необходимо определить:

- объем гельцементного раствора;
- объем цементного раствора;
- количество цемента для приготовления цементного раствора:
- количество воды для приготовления 1м³ гельцементного раствора;
- количество глины для приготовления 1м³ гельцементного раствора;
- количество цемента для приготовления 1м³ гельцементного раствора;
- количество воды для приготовления 1м³ гельцементного раствора;
- количество продавочной жидкости;
- суммарную подачу цементного агрегата в процессе цементирования;
- максимальное давление в процессе цементирования;
- количество цементно-смесительных машин под сухой цемент;
- количество цементно-смесительных машин под сухой цемент и глину;
- число цементировочных агрегатов;
- число цементных агрегатов при закачке буферной жидкости;

- число цементных агрегатов при закачке цементного и гельцементного растворов:
- максимальное давление при закачке буферной жидкости;
- время цементирования;
- время схватывания.

Таблица 3.3 – Задания для решения по вариантам (вариант задает преподаватель)

Номер варианта:	1	2	3	3	5	6	7	8
глубина скважины по	2500	2050	2500	3550	2650	2850	3150	3200
стволу, (м)								
Высота столба буферной	570	550	600	589	754	711	823	457
жидкости за колонной l_1 ,								
(M)								
Выстота столба гельце-	2010	1980	1989	1991	1990	1879	2148	2211
ментного раствора ко-								
лонной l ₂ , (м)								
Выстота столба гельце-	600	610	670	655	822	788	890	550
ментного раствора (м)								
Глубина спуска кондук-	850	850	850	850	850	850	850	850
тора,м								
Диаметр кондуктора,	245	245	245	245	245	245	245	245
(MM)								
Диаметр эксплуатаци-	168	168	168	168	168	168	168	168
онной колонны, (мм)								
Внутренний диаметр	152	152	152	152	152	152	152	152
эксплуатационной ко-								
лонны, (мм)								
Высота цементного ста-	20	20	20	20	20	20	20	20
кана,м								

Задача 4

Для трехинтервального тангенциального профиля наклонной скважины (см. рисунок 3.3) необходимо определить:

- 1. Значение зенитного угла α_1 , при котором обеспечивается проектное смеще- ние ство- ла скважины на проектной глубине H.
- 2. Длину тангенциального участка.
- 3. Длину эксплуатационного участка.

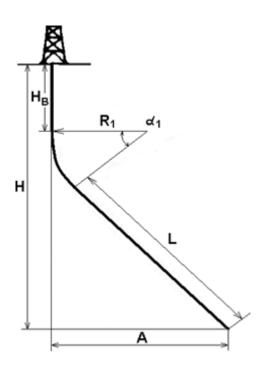


Рисунок 3.3 – Трёхинтервальный тангенциальный профиль

Таблица 3.4 – Задания для решения по вариантам (вариант задает преподаватель)

Номер варианта:	1	2	3	3	5	6	7	8
глубина спуска	100	80	120	110	90	140	50	60
направления, (м)								
глубина спуска	720	800	820	750	900	850	770	830
кондуктора, (м)								
глубина спуска экс-	2100	2470	2500	2300	2600	3010	2870	2760
плуатационной колон-								
ны (м)								
проектная глубина до	2070	2460	2490	2280	2585	3000	2840	2740
кровли пласта, (м)								
проектное смещение	750	400	800	550	658	740	930	820
на кровле пласта, (м)								
радиус кривизны	388	340	400	280	300	315	510	630
участка начального								
искривления R_1 , (м)								
мощность	28	10	10	20	15	10	30	22
продуктивного пласта,								
(M)								
Номер варианта:	9	10	11	12	13	14	15	16
глубина спуска	100	80	120	110	90	140	50	60
направления, (м)								
глубина спуска	720	800	820	750	900	850	770	830
кондуктора, (м)								
глубина спуска экс-	2100	2470	2500	2300	2600	3010	2870	2760
плуатационной колон-								
ны (м)								
проектная глубина до	2070	2460	2490	2280	2585	3000	2840	2740

кровли пласта, (м)								
проектное смещение	700	500	600	650	400	800	500	770
на кровле пласта, (м)								
радиус кривизны	600	650	550	500	800	850	700	650
участка начального								
искривления R_1 , (м)								
мощность	28	10	10	20	15	10	30	22
продуктивного пласта,								
(M)								

Критерии оценки: за каждую верно решенную задачу -10 баллов; за неправильно решенную задачу -0 баллов. Максимальное количество баллов -40.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (ФИЛИАЛ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙУНИВЕРСИТЕТ»

(Филиал ТИУ в г. Ноябрьске)

Кафедра Транспорта и технологий нефтегазового комплекса

Вопросы для итоговой аттестации (экзамен)

- 1. Основные функции буровой установки для бурения глубоких скважин на нефть и газ.
- 2. Процедура и цель выполнения теста породы на прочность после разбуривания башмака обсадной колонны.
- Перемещение буровой при кустовом бурении. Количество скважин на кусте, ми-3. нимальное расстояние между скважинами.
 - 4. Основные этапы цикла строительства скважины.
- 5. Основные составляющие процесса углубления скважины, очередность и цель исполнения
- Шаблонирование открытого ствола перед спуском обсадной колонны. Правила вы-6. полнения и особенности состава компоновки низа бурильной колонны.
- Талевая системы. Безопасность при работе с талевой системой. Учет наработки та-7. левых канатов.
- Отворот и падение бурильного инструмента на забой скважины. Причины, последствия и методы предупреждения.
- 9. Регламентирование плотности буровых промывочных жидкостей. Регулирование плотности при бурении.
 - 10. Функциональная схема буровой установки. Виды приводов буровой установки.
- Использование верхних силовых приводов при бурении нефтяных и газовых скважин. Преимущества верхних силовых приводов.
- Правила проведения спуско-подъемных операций. Осуществление долива скважины. Подъем с сифоном и без.
- Эффекты свабирования и поршневания при спуско-подъемных операциях. Причины и последствия возникновения данных эффектов.
- Гидродинамическая система насос желоба. Факторы, влияющие на давление прокачки буровых насосов. Взаимодействие между давлением прокачки бурового раствора и забойным давлением.
- Гидромониторный эффект при работе долота на забое скважины. Применение данного эффекта в бурении скважин. Расчет диаметра гидромониторных насадок долота.
- Условия достижения максимального очищения скважины от шлама в процессе углубления скважины.

- 17. Факторы, определяющие давление прокачки бурового раствора в процессе бурения. Взаимодействие между давлением прокачки бурового раствора и забойным давлением.
- 18. Область рационального применения долот различных конструкций. Основные критерии выбора долот для бурения скважин.
 - 19. Основные принципы предупреждения и ликвидации нефтегазоводопроявлений.
- 20. Процесс образования шламовой подушки в вертикальной и горизонтальной скважинах. Суть явления, причины, последствия, а также методы борьбы с образованием шламовой подушки.
- 21. Бурильные трубы. Варианты конструкции бурильных труб. Критерии выбора типоразмера и группы прочности бурильных труб.
- 22. Применение УБТ и ТБТ в компоновке низа бурильных труб. Назначение УБТ и ТБТ и принципы расположения, а также выбора длины.
- 23. Буровые растворы. Неньютоновские жидкости. Модели описания неньютоновских жидкостей (Бингам и Гершель-Бакли)
- 24. Требования к буровым растворам при эксплуатации винтовых забойных двигателей. Влияние параметров бурового раствора на срок службы ВЗД.
- 25. Напряжения в буровом инструменте при работе в скважине. Нормальные, касательные и эквивалентные напряжения для роторного бурения и бурения с ГЗД.
- 26. Спиральные и синусоидальные изгибы бурильной колонны в процессе бурения. Причина появления изгибов, их влияние на процесс бурения
- 27. Виды систем очистки буровых растворов. Основные этапы очистки буровых растворов.
- 28. Распределение полных давлений в скважине. Построение эпюр полных давлений в скважине.
- 29. Эквивалентная плотность буровых растворов. Факторы, определяющие величину эквивалентной плотности. Влияние эквивалентной плотности на показатели процесса бурения
- 30. Общие принципы выбора характеристик бурового раствора для безаварийного бурения
- 31. Возникновение реактивного момента на долотах различных конструкций. Влияние параметров режима бурения на реактивный момент на долоте. Влияние реактивного момента на показатели процесса бурения.
- 32. 32 Турбобур. Характерные параметры, принцип действия и силовые характеристики
- 33. Определение ненормальностей в работе долота, турбобура, ВЗД в процессе бурения по показаниям приборов на устье.
 - 34. ВЗД. Характерные параметры, принцип действия и силовые характеристики
- 35. Применение совмещенных графиков давлений при проектировании строительства скважин.
- 36. Диаметральный зазор (натяг) ВЗД. Выбор диаметрального натяга ВЗД в зависимости от условий эксплуатации ВЗД. Влияние на характеристики ВЗД
 - 37. Распределение осевых нагрузок и моментов в вертикальной скважине
- 38. Комбинированный, ГЗД, роторный режимы вращения долота. Преимущества и недостатки.
 - 39. Буровой яс. Виды и принцип действия.

- 40. Правила установки ясов в компоновке низа бурильной колонны. Влияние давления в колонне на работу яса.
- 41. Взаимное влияние параметров режима бурения при различных видах бурения роторном, винтовым забойным двигателем и турбобуром.
- 42. Различия в характеристиках и исполнениях ВЗД. Выбор ВЗД для конкретных условий бурения.
 - 43. Влияние характеристик бурового раствора на работу ВЗД.
 - 44. Контроль нагрузки на долото по давлению прокачки при работе с ВЗД.
- 45. Трение бурильной колонны о стенки скважины в процессе бурения и при спускоподъемных операциях. Влияние трения процесс бурения скважины.
- 46. Факторы, определяющие усталостный износ труб в процессе бурения. Наработка и дефектовка буровых труб
- 47. Варианты исполнения роторно-статорных пар и их влияния на характеристики двигателей.
- 48. Силы и моменты, действующие на буровую колонну в процессе бурения. Прямые и косвенные измерения сил и моментов в процессе бурения.
- 49. Подготовка ВЗД к работе. Правила сборки КНБК с ВЗД. Порядок обслуживания двигателя.
- 50. Принципиальная схема шпиндельной секции, соединение с силовой секцией. Назначение шпиндельной секции.
- 51. Нейтральное сечение бурильной колонны в процессе бурения и спускоподъемных операций. Влияние расположения нейтрального сечения в колонне на процесс бурения.
- 52. Режим бурения. Параметры режима бурения и основные качественные и количественные показатели режима бурения. Понятие оптимального режима бурения.
- 53. Создание нагрузки на долото буровым инструментом. Влияние нагрузки на долото на показатели режима бурения.
- 54. Циркуляция бурового раствора. Влияние расхода бурового раствора на показатели режима бурения.
- 55. Способы вращения долота. Влияние скорости вращения долота на показатели режима бурения.
- 56. Измерение реактивного момента, сил трения и нагрузки на долото по датчикам на устье в процессе бурения
- 57. Возникновение прихватов бурильной колонны в процессе бурения. Виды прихватов бурильной колонны.
- 58. Возникновение дифференциального прихвата в процессе бурения. Механизм образования, факторы, влияющие на вероятность и силу дифференциального прихвата, меры борьбы.
- 59. Специальные режимы бурения скважин. Разнообразие целей и задач специальных режимов бурения скважин.
- 60. Показатели бурения. Механическая, рейсовая, цикловая, коммерческая и техническая скорости бурения. Суть и информативность показателей бурения.
 - 61. Профили наклонно-направленных скважин. Участки профиля.
 - 62. Требования к кривизне наклонных скважин.
 - 63. Каналы связи телесистем.
 - 64. Ословные каналы связи с забойными инклинометрическими системами.

- 65. Ограничения на интенсивность искривления скважин на участке набора зенитного угла, уменьшения зенитного угла, на интервале установки насосного оборудования.
 - 66. КНБК для участков набора зенитного угла.
 - 67. Трехинтервальный профиль с участком стабилизации зенитного угла.
 - 68. Трехинтервальный профиль с участком падения зенитного угла.
 - 69. Профиль скважины с горизонтальным окончанием.
- 70. Определение расчетной интенсивности искривления ствола скважины при использовании турбинных (электро-) отклонителей.
 - 71. Определение величины корректировки азимута и зенитного угла.
 - 72. Ориентирование при косвенных методах.
 - 73. Корректировка параметров кривизны с помощью ориентируемых компоновок.
 - 74. Выбор и обоснование оптимальной траектории ствола скважины.
 - 75. Корректировка направления ствола скважины неориентируемыми компоновками.
- 76. Ориентирование отклонителя в вертикальном стволе. Обозначение углов и направление их отсчета.
 - 77. Зарезка с вертикального участка ствола скважины.
 - 78. Ориентирование отклонителя в наклонном стволе.
 - 79. Определение фактической интенсивности искривления.
 - 80. Выбор компоновок для бурения наклонных скважин.
 - 81. Неориентируемые компоновки для увеличения (добора) зенитного угла.
 - 82. Компоновка низа бурильной колонны.

Критерии оценки:

При оценке знаний обучающиеся устно отвечают на 2 вопроса из выше представленного списка, за каждый правильный ответ – 50 баллов.

Максимальное количество баллов – 100.