Аннотация рабочей программы учебной дисциплины

Технологические процессы и размерный анализ в аддитивном производстве

основной профессиональной образовательной программы по направлению подготовки 01.03.02 Прикладная математика и информатика

09.03.02 Информационные системы и технологии (ИСТНб) 09.03.02 Информационные системы и технологии (СМАРТб)

12.03.01 Приборостроение

13.03.01 Теплоэнергетика и теплотехника

19.03.04 Технология продукции и организация общественного питания 21.03.02 Землеустройство и кадастры

38.03.05 Бизнес-информатика 43.03.03 Гостиничное дело

45.03.04 Интеллектуальные системы в гуманитарной сфере

1. Цель изучения дисциплины

обеспечение подготовки бакалавров призванных решать проектно-конструкторские, технологические и научно-исследовательские работы для решения актуальнейшей проблемы отечественного машиностроения - сокращения сроков конструкторско-технологической подготовки производства и повышения его мобильности и гибкости. На основе отобранных теоретических знаний в области размерного анализа научить бакалавров квалифицированно применять на практике методы и средства проектирования и выполнения инженерных расчетов размерных цепей изделий аддитивного производства

2. Место дисциплины в структуре основной профессиональной образовательной программы:

Дисциплина относится к дисциплинам элективного модуля "Прототипирование и аддитивное производство (Промышленный дизайн)", формируемой участниками образовательных отношений учебного плана.

3 Результаты освоения дисциплины: формируемые компетенции и индикаторы их постижения

достижения								
Код и наименование	Код и наименование индикатора	Код и наименование результата						
компетенции	достижения компетенции (ИДК)	обучения по дисциплине						
		Знать: 31 основные закономерности						
	ПКСд-30.1 Выбирает с применением	и методики проектирования						
	САD-, САРР-систем вид и метод	технологических процессов						
	изготовления и схем базирования	Уметь: У1 выявлять основные						
	исходных заготовок и стандартных	технические задачи, решаемые при						
	средств технологического оснащения,	разработке технологического						
	необходимых для реализации	процесс						
ПКСд-30 Способен	технологических процессов	Владеть: В1 навыками выявления						
разрабатывать с	изготовления машиностроительных	основных технических задач,						
использованием САD-,	изделий средней сложности	решаемых при разработке						
САРР-систем		технологического процесса						
технологические процессы		Знать: 32 возможности						
изготовления		автоматизированных систем						
машиностроительных	ПКСд-30.2 Оформляет с применением	расчёта технологических размерных						
изделий средней сложности	САД-, САРР-, РДМ-систем цепей на основе размерного							
	технологическую документацию на	Уметь: У2 моделировать размерную						
	технологические процессы и	структуру технологического						
	технологические маршруты	процесса						
	изготовления машиностроительных	Владеть: В2 навыками размерного						
	изделий средней сложности	анализа и проектирования						
	технологических проце							
		структурной оптимизацией на						

	основе размерного анализа с использованием вычислительной техники Знать: 33 современные тенденции
ПКСд-30.3 Применяет методику выбора технологических режимов технологических операций и определяет тип производства изготовления машиностроительных изделий средней сложности с применением САРР-систем	развития методов, средств и систем размерного анализа Уметь: УЗ прогнозировать качество технологических процессов на основе размерного анализа Владеть: ВЗ методами решения технологических размерных цепей

4 Общая трудоемкость дисциплины

составляет 3 зачетных единицы, 108 часов

5 Форма промежуточной аттестации очная форма обучения: зачет – 7 семестр.

заочная форма обучения: зачет – 7 семестр.

для направлений подготовки:

13.03.01 Теплоэнергетика и теплотехника (направленность: Промышленная теплоэнергетика)

21.03.02 Землеустройство и кадастр направленность: (Городской кадастр)

43.03.03 Гостиничное дело (направленность: Индустрия гостеприимства и туризма)

Лист согласования

Внутренний документ "ехнологические процессы и размерный анализ в аддитивном производстве_2023_ИОТ_бак_ИОТ_бак"

Документ подготовил: Теплоухов Олег Юрьевич

Документ подписал:

Серийный номер ЭП	Должность	ФИО	ИО	Результат
	Доцент, имеющий ученую степень кандидата наук (базовый уровень)	Теплоухов Олег Юрьевич		Согласовано
	Заведующий кафедрой, имеющий ученую степень кандидата наук	Некрасов Роман Юрьевич		Согласовано
	Специалист 1 категории		Радичко Диана Викторовна	Согласовано