МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ» Филиал ТИУ в г. Тобольске

Кафедра электроэнергетики

Релейная защита и автоматизация электроэнергетических систем Методические материалы к курсовой работе (проекту) по дисциплине «Релейная защита и автоматизация электроэнергетических систем» для обучающихся по направлению подготовки 13.03.02 Электроэнергетика и электротехника

Составитель: **Е.Г. Панова,** кандидат технических наук

> Тобольск 2020

В представленных методических материалах содержатся теоретические положения, методические подходы, необходимые для выполнения курсовой «Релейная работы ПО дисциплине защита И автоматизация электроэнергетических систем», а также разделов курсовых работ и проектов и выпускных квалификационных работ, посвященных проектированию и расчетам устройств релейной защиты и автоматики основных элементов системы электроснабжения: силовых трансформаторов, кабельных линий, двигателей, устройств компенсации реактивной мощности. Изложены методы решения вопросов автоматического регулирования напряжения и частоты средствами главных понизительных подстанций, рассмотрены автоматические устройства ликвидации аварийных состояний: АПВ, АВР. АЧР. Большая часть расчетов проиллюстрирована числовыми примерами, а также представлены и необходимые справочные данные.

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	5
ВВЕДЕНИЕ	6
1. ОБЩИЕ ПОЛОЖЕНИЯ	7
2. СОДЕРЖАНИЕ РАСЧЁТНО-ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ	8
3. ИСХОДНЫЕ ДАННЫЕ	9
4. ВЫБОР НЕОБХОДИМОГО ОБЬЁМА РЕЛЕЙНОЙ ЗАЩИТЫ	И
АВТОМАТИКИ	10
5. РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ	11
5.1. Расчёт сопротивлений схемы замещения сети	
5.2. Расчёт токов КЗ на шинах ГПП	13
6. РАСЧЁТ РЕЛЕЙНОЙ ЗАЩИТЫ	
6.1. Разработка схемы релейной защиты и автоматики	
6.2. Расчёт уставок реле защит	
6.3. Проверка трансформаторов тока по допустимой погрешност	ги и
выбор сечения проводов	
6.4. Проверка защит и выводы	
7. ЗАЩИТА СИЛОВОГО ТРАНСФОРМАТОРА	
7.1. Токовые защиты трансформаторов	
7.2. Расчёт максимальной токовой защиты и отсечки на стороне BI	
7.3. Дифференциальная защита трансформатора	
7.4. Пример расчёта защиты трансформатора	
7.5. Пример расчёта защиты трансформатора собственных	нужд
(цехового трансформатора)	59
8. ЗАЩИТА КАБЕЛЬНЫХ ЛИНИЙ НАПРЯЖЕНИЕМ 6(10) кВ	
8.1. Максимальная токовая защита	
8.2. Максимальная токовая защита кабельных линий	
8.3. Токовая отсечка (дополнительная)	
8.4. Комбинированная отсечка по току и напряжению	
8.5. Продольная дифференциальная защита типа ДЗЛ	
8.6. Максимальная токовая защита нулевой последовательности	
8.7. Пример расчёта защиты кабельной линии	68
9. ЗАЩИТА СЕКЦИОННОГО ВЫКЛЮЧАТЕЛЯ	73
9.1. Ток срабатывания защиты	
9.2. Пример расчёта защиты секционного выключателя	
10 ЗАЩИТА КОНДЕНСАТОРНЫХ УСТАНОВОК	
10.1. Пример расчёта защит конденсаторной установки мощно	
3150 квар (КУ-6,3-3150)	
11. ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ	
11.1 Расчетная мощность электродвигателей	
11.2. Пример расчёта релейной защиты электродвигателя	
12. АВТОМАТИКА ПОНИЗИТЕЛЬНОЙ ПОДСТАНЦИИ	88

12.1. Автоматическое повторное включение (АПВ)	88
12.2. Автоматическое включение резерва (АВР)	89
12.3. Автоматическая частотная разгрузка (АЧР)	90
12.4. Автоматическое регулирование напряжения	трансформатора
(APHT)	90
12.5. Устройства для автоматического включения	конденсаторной
установки	93
ПРИЛОЖЕНИЕ	95
ЗАКЛЮЧЕНИЕ	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	107

ПРЕДИСЛОВИЕ

Глубокое освоение любой дисциплины, в том числе и дисциплины «Релейная защита и автоматика систем электроснабжения», невозможно без приобретения навыков решения практических задач, осмысления полученных результатов. Поэтому программой дисциплины «Релейная защита и автоматизация электроэнергетических систем» предусматривается выполнение студентами курсовой работы, что направлено на приобретение студентами практических навыков в выполнении ряда проектных работ по РЗиА. Назначением предлагаемого учебного пособия является описание круга вопросов, подлежащих рассмотрению в курсовой работе, изложение методических и практических подходов, используемых при разработке проектов устройств релейной защиты и автоматики элементов систем электроснабжения. Большая часть излагаемых теоретических положений и методик выбора параметров устройств РЗиА сопровождается примерами расчетов, что окажет существенную помощь в освоении учебного материала дисциплины «Релейная защита и автоматизация электроэнергетических систем».

ВВЕДЕНИЕ

Задачи повышения надёжности, экономичности функционирования систем электроснабжения и качества электроэнергии тесно связаны с вопросами проектирования устройств релейной защиты и автоматики оборудования подстанций, питающих и распределительных сетей.

Целью курсовой работы является закрепление теоретического курса, прививание навыков самостоятельной работы по выбору, расчету и проектированию устройств релейной защиты и автоматики (РЗиА).

В качестве исходных данных для курсовой работы служат результаты курсового проекта, выполненного студентом по курсу «Электрические станции и подстанции».

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Для всех видов основного оборудования электростанции и подстанции, для которого выбирались электрические аппараты в курсовом проекте «Электрические станции и подстанции систем электроснабжения», а также для питающих и отходящих линий на стороне высокого напряжения выбрать объём и вид устройств РЗ и А и разместить их на схеме в соответствии с рекомендациями «Правил устройства электроустановок» (ПУЭ) [1].
- 1.2. Выполнить расчет параметров срабатывания релейной защиты и автоматики для оборудования, указанного в задании на курсовую работу. Во всех вариантах выполняется расчёт уставок защит основных силовых трансформаторов проектируемой электростанции и подстанции.
- 1.3. Расчет токов короткого замыкания выполняется с использованием результирующего сопротивления системы, определённого в максимальном и минимальном режиме работы системы до точки короткого замыкания на стороне высшего напряжения проектируемой подстанции.
- 1.4. Измерительные аппараты, выбранные в курсовом проекте «Электрические станции и подстанции», дополнительно проверяются по значениям коэффициентов трансформации, их размещению в сети, по 10% погрешности (трансформаторы тока) и на соответствие заданному классу точности (трансформаторы напряжения).
- 1.5. Вид оперативного тока и его источники определяются в проекте «Электрические станции и подстанции» и согласуются с руководителем.
- 1.6. Курсовая работа выполняется с обязательным использованием литературы, рекомендованной в настоящих указаниях. Кроме того, рекомендуется пользоваться руководящими указаниями по РЗ и А.
- 1.7. Курсовая работа оформляется в виде расчётно-пояснительной записки на листах формата A4. Схемы устройств релейной защиты и автоматики приводятся на отдельных листах и выполняются в соответствии с ЕСКД.

Объем расчетно-пояснительной записки примерно 25-30 страниц текста.

2. СОДЕРЖАНИЕ РАСЧЁТНО-ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ

Расчётно-пояснительная записка должна содержать следующие разделы:

- 2.1. Введение.
- 2.2. Исходные данные.
- 2.3. Выбор устройств Р3 и А на всех присоединениях проектируемой подстанции.
 - 2.4. Расчёт токов короткого замыкания.
 - 2.5. Расчёт релейной защиты и автоматики присоединений.

Расчёт релейной защиты и автоматики проектируемого присоединения включает следующие подразделы:

- 2.5.1. Расчёт уставок защиты и автоматики.
- 2.5.2. Проверка трансформаторов тока на 10% погрешность (при необходимости).
- 2.5.3. Разработка схемы управления, сигнализации защиты и автоматики.
 - 2.6. Список использованной литературы.

3. ИСХОДНЫЕ ДАННЫЕ

При проектировании устройств релейной защиты и автоматики исходными данными являются:

- Однолинейная схема электрических соединений проектируемой подстанции.
- Схема электрической сети, в состав которой включена проектируемая подстанция.
- Нормальная схема электроснабжения (режим работы нейтралей, нормальное положение секционных и шиносоединительных выключателей, компенсация ёмкостных токов и т.д.)
- Электрические нагрузки элементов сети в нормальном и утяжелённом режимах.
- Результирующие сопротивления системы для расчёта токов КЗ на стороне высокого напряжения силового трансформатора в минимальном и максимальном режимах работы системы.
 - Вид оперативного тока и его источники.

4. ВЫБОР НЕОБХОДИМОГО ОБЬЁМА РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Объём защиты и автоматики на всех присоединениях проектируемой подстанции предусматривается согласно требованиям ПУЭ и соответствующими «Руководящими указаниями по релейной защите» [1, 13, 14].

При выборе вида устройств РЗиА на питающих и отходящих линиях высокого напряжения следует учитывать тип проектируемой подстанции (тупиковая, транзитная, узловая). Особое внимание обратить на линии, при отключении которых возможен распад энергосистемы (разрыв транзита, разделение системы на несинхронно работающие части и т.д.). С другой стороны, для тупиковых подстанций с упрощенными схемами соединения на стороне высокого напряжения следует применять наиболее простые и эффективные виды РЗ и А.

Объём и вид защит и автоматики силового трансформатора определяется его мощностью, количеством обмоток и условиями параллельной работы.

При выборе защит на кабельных линиях следует учитывать количество параллельно прокладываемых кабелей, а также наличие специальных требований по быстродействию, резервированию или селективности действия защит. Если таких требований нет, следует применять наиболее простые и эффективные схемы.

Выбор защит электродвигателей определяется их типом, мощностью и возможностью самозапуска. Мощность электродвигателя следует принять равной мощности отходящего фидера, округлённой до ближайшей стандартной величины.

Выбор автоматических устройств не должен ограничиваться установкой автоматики для управления одним присоединением (АПВ). Следует также рассматривать системные вопросы автоматизации. Например, устройства противоаварийной автоматики АВР, АЧР; автоматическое регулирование режима АРВ, АРН; автоматику включения синхронных машин, конденсаторных батарей и др.

5. РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

5.1. Расчёт сопротивлений схемы замещения сети

Расчётные схемы для расчётов токов короткого замыкания для двухтрансформаторных подстанций с раздельной работой на стороне низкого напряжения приведены на рис. 5.1 (a, б).

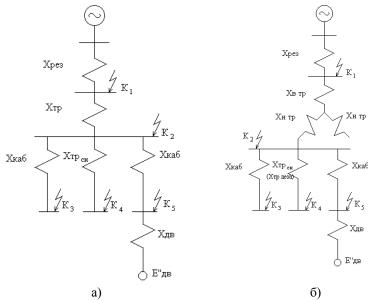


Рис. 5.1. К расчету токов короткого замыкания

Максимальный и минимальный режимы работ системы задаются руководителем проекта. Для этих режимов по результатам курсового проекта «Электрические станции и подстанции» рассчитываются:

 $X_{
m peзmax^*}$ - результирующее сопротивление до точки K_1 в максимальном режиме системы, о.е.;

 X_{pesmin^*} - результирующее сопротивление до точки K_1 в минимальном режиме системы, о.е.

Расчёт токов КЗ производится в именованных единицах (Ом), поэтому:

$$X_{\text{pesmax}} = X_{\text{pesmax}} \cdot \frac{U_6^2}{S_6} \,.$$
 (5.1)

Во всех формулах индекс, «**max**» относится к максимальному режиму «**min**» к минимальному, но не к величине сопротивления, тока и

Т.Д.

Расчёт сопротивления трансформаторов:

- для двухобмоточных трансформаторов, Ом

$$X_{\text{\tiny TP}} = X_{\text{\tiny B}} + X_{\text{\tiny H}} = \frac{u_k(\%)U_{\text{\tiny cp}}^2}{100S_{\text{\tiny HOM}}},$$
 (5.2)

где u_k - напряжение КЗ, %; $U_{\rm cp}$ - среднее напряжение системы, приведенное в табл. 5.1; $S_{\text{ном}}$ - номинальная мощность трансформатора, MBA;

для трансформаторов с расщеплённой обмоткой, Ом

$$X_{\rm BH} = \frac{u_{k(\rm B-H\parallel H)} U_{\rm cp}^2}{100S_{\rm HOM}},$$
 (5.3)

где $u_{k(B-H||H)}$ – напряжение КЗ между обмоткой ВН и параллельно соединенными обмотками НН,%.

Если известно напряжение КЗ между обмотками низкого напряжения $u_{k \text{ HH}}$, то:

$$X_{\rm hh} = \frac{u_{\rm kh-h} U_{\rm cp}^2}{100 S_{\rm max}}.$$
 (5.4)

Коэффициент расщепления:

$$k_{\rm p} = 4 \left(\frac{u_{\rm kBH1}}{u_{\rm kBH}} - 1 \right);$$
 (5.5)

$$X_{\rm H} = X_{\rm BH} \cdot k_{\rm D} / 2;$$
 (5.6)

$$X_{\rm B} = X_{\rm BH} \cdot (1 - k_{\rm p} / 4). \tag{5.7}$$

Если u_k для обмоток BH-HH1(HH2) в справочнике не приведено, можно воспользоваться упрощенной методикой:

$$X_{p} = 0.125 \cdot X_{pu}$$
; (5.8)

$$X_{H} = 1,75 \cdot X_{BH} \,. \tag{5.9}$$

Для трансформаторов с РПН сопротивление будет зависеть от положения переключателя в максимальном или минимальном режиме.

При этом сопротивление трансформатора в максимальном режиме определяется при минимальном напряжении системы $U_{\rm cp}$ ·(1- $\Delta U_{\rm P\Pi H^*}$), а в минимальном режиме РПН должно соответствовать максимально возможному напряжению системы $U_{\rm cp}\cdot(1+\Delta U_{\rm PПH^*})$.

Внимание. Во всех случаях это напряжение не должно превышать максимально возможного, приведенного в табл. 5.1. Если $U_{\rm cp}\cdot(1+\Delta U_{\rm P\Pi H^*})>U_{\rm max}$, то в формулы следует подставлять $U_{\rm max}$.

Таблица 5.1

Средние и максимальные напряжения

$U_{\scriptscriptstyle m HOM}$, кВ	$U_{ m cp}$, кВ	$U_{ m max}$, кВ
220	230	252
110	115	126
35	37	40,5
10	10,5	12,0
6	6,3	7,2

Таким образом, сопротивление трансформатора в максимальном режиме (Ом) определится:

$$X_{\text{TP max}} = (X_{\text{H}} + X_{\text{B}})(1 - \Delta U_{\text{PIIH*}})^2.$$
 (5.10)

В минимальном

$$X_{\text{rp min}} = (X_{\text{H}} + X_{\text{B}})(1 + \Delta U_{\text{PIIH}*})^{2}. \tag{5.11}$$

5.2. Расчёт токов КЗ на шинах ГПП

5.2.1. Расчёт токов K3 в точке K_1

Ток КЗ в максимальном режиме определяется при номинальных напряжениях сети $U_{\rm HOM\ BH}.$

$$I_{\text{к max вH}} = \frac{U_{\text{ном вH}}}{\sqrt{3}X_{\text{nes max}}}, \text{ кA}.$$
 (5.12)

Ток КЗ в минимальном режиме определяется при максимальных напряжениях сети.

$$I_{\text{к min BH}} = \frac{U_{\text{cp BH}} (1 + \Delta U_{\text{P}\Pi\text{H}^*})}{\sqrt{3} X_{\text{neamin}}}, \text{ кA}.$$
 (5.13)

5.2.2. Расчёт токов КЗ в точке К2

Токи КЗ, в кА, в максимальном и минимальном режимах, приведенные к стороне ВН:

$$I_{\text{к max BH}} = \frac{U_{\text{ном BH}}}{\sqrt{3}(X_{\text{nes max}} + X_{\text{TD max}})},$$
 (5.14)

$$I_{\text{к min BH}} = \frac{U_{\text{cp BH}} (1 + \Delta U_{\text{PIIH*}})}{\sqrt{3} (X_{\text{pes min}} + X_{\text{Tp min}})}.$$
 (5.15)

Токи КЗ, в кА, приведенные к стороне НН:

$$I_{\kappa \max HH} = I_{\kappa \max BH} \cdot \frac{U_{\text{HOMBH}}}{U_{\text{CD HH}}}, \qquad (5.16)$$

$$I_{\kappa \min_{\text{HH}}} = I_{\kappa \min_{\text{BH}}} \cdot \frac{U_{\text{cp BH}} (1 + \Delta U_{\text{P}\Pi\text{H}^*})}{U_{\text{cp HH}}}. \tag{5.17}$$

Результирующие сопротивления системы до шин НН подстанции:

$$X_{\text{с рез max HH}} = U_{\text{ср HH}} / \sqrt{3} I_{\text{к2 max HH}};$$
$$X_{\text{с рез min HH}} = U_{\text{ср HH}} / \sqrt{3} I_{\text{к2 min HH}}.$$

5.2.3. Расчёт токов КЗ в точке К3

Длина кабельной линии задаётся руководителем. Сопротивление кабельной линии, в Ом:

$$X_{\text{ka6}} = x_0 \frac{\ell}{n},\tag{5.18}$$

где ℓ - длина кабеля, км; x_0 - индуктивное сопротивление 1 км кабеля; n - число параллельно включенных кабелей.

Ток КЗ, в кА, в максимальном и минимальном режимах работы:

$$I_{\text{к max HH}} = \frac{U_{\text{cp HH}}}{\sqrt{3}(X_{\text{c pe3 max HH}} + X_{\text{ka6}} + X_{\text{p}})},$$
 (5.19)

$$I_{\text{к min HH}} = \frac{U_{\text{cp HH}}}{\sqrt{3}(X_{\text{c pes min HH}} + X_{\text{ka6}} + X_{\text{p}})}.$$
 (5.20)

При расчёте токов КЗ напряжение сети принимается:

- в максимальном режиме равным номинальному $U_{\text{ном вн}}$;
- в минимальном режиме максимальному напряжению, соответствующему полному диапазону РПН $U_{\rm cp~BH}(1+\Delta U_{\rm P\Pi H^*})$, но не выше $U_{\rm max,BH}$ (по табл.5.1).

5.2.4. Расчёт токов КЗ в точке К4

Сопротивление трансформатора собственных нужд или цехового трансформатора, в Ом, приведённое к стороне ВН подстанции.

$$X_{\text{тсh(цex a)}} = \frac{u_k \cdot U_{\text{cp HH}}^2}{100 \cdot S_{\text{H TD}}}.$$
 (5.21)

Ток КЗ в максимальном и минимальном режимах работы, в кА, приведенный к стороне ВН подстанции:

$$I_{\text{к max BH}} = \frac{U_{\text{ном BH}}}{\sqrt{3}(X_{\text{с pes max HH}} + X_{\text{TCH}})},$$
 (5.22)

$$I_{\text{K min BH}} = \frac{U_{\text{HOMBH}}}{\sqrt{3}(X_{\text{C DP3 min HH}} + X_{\text{TCH}})}.$$
 (5.23)

Токи К3, приведенные к стороне HH, определяются по формулам (5.16, 5.17).

Для расчёта тока КЗ за цеховым трансформатором, в формулах (5.22, 5.23), вместо $X_{\text{тсн}}$ следует подставлять сопротивление кабеля и цехового трансформатора ($X_{\text{каб}} + X_{\text{тр-ра цеха}}$).

5.2.5. Расчёт токов КЗ от электродвигателей

Мощность электродвигателя задаётся преподавателем или определяется студентом из условия

$$S_{\scriptscriptstyle
m JB} pprox S_{\scriptscriptstyle
m OTX\, ЛИНИИ} = \sqrt{3} U_{\scriptscriptstyle
m HOM} \cdot I_{\scriptscriptstyle
m pacq}.$$

Тип двигателя и его характеристики определяются по справочным данным для двигателя, ближайшего по мощности.

Сверхпереходные ЭДС E''_q , в кВ, и сопротивление X''_d , в Ом, определяются по паспортным данным электродвигателей:

$$E_{q}^{"} = E_{q^{*}}^{"} \cdot U_{\text{hom}},$$
 (5.24)

$$X_d'' = X_{d*}'' \frac{U_{\rm cp}^2}{S_{\rm hom}}.$$
 (5.25)

Отсюда

$$I_{\kappa \max} = \frac{E_q^{"}}{X_d^{"}}.$$
 (5.26)

6. РАСЧЁТ РЕЛЕЙНОЙ ЗАЩИТЫ

Расчёт релейной защиты проектируемых присоединений начинается после выбора вида и объёма РЗиА на подстанции. Он включает несколько этапов [2,3].

6.1. Разработка схемы релейной защиты и автоматики

При выборе схемы защиты и автоматики следует учитывать требования, предъявляемые к защите (селективность, чувствительность, быстродействие, надёжность, резервирование и т.д.). Схема релейной защиты должна соответствовать возможному характеру повреждений и ненормальных режимов, определяемых режимом нейтрали сети и специфическими условиями работы электрооборудования. Предпочтение отдается схеме наиболее простой, требующей минимального количества оборудования. Схему и оборудование следует выбирать новейшие. Не допускается применение комплектов и аппаратов, снятых с производства.

При разработке схем защит и автоматики, их следует указывать со схемами управления и сигнализации выключателей и других коммутационных аппаратов.

Схемы защит и автоматики следует изображать разнесённым способом с чётким разделением токовых, напряженческих цепей, цепей управления, защиты и сигнализации.

Если на проектируемой подстанции не предусматривается аккумуляторная батарея, следует в схеме обязательно указать источник оперативного тока.

На листах со схемами должна быть приведена спецификация оборудования, включенного в схему защиты и автоматики.

6.2.Расчёт уставок реле защит

При расчёте уставок [2,3], в соответствии с принципом действия и особенностей схем, определяются, от какого режима отстраивается защита и с чем согласовывается. Затем по соответствующим формулам определяются расчётные значения уставок защит на первичном токе, и затем уставки реле, которые округляются до ближайших значений уставки в соответствии с конструктивными особенностями применяемых реле и аппаратов. Определяется параметр срабатывания защиты при принятой уставке, который используется для расчёта чувствительности защиты.

6.3. Проверка трансформаторов тока по допустимой погрешности и выбор сечения проводов

Определяется наибольший первичный ток $I_{1\text{max}}$, при котором погрешность трансформатора тока не должна превышать 10% для максимальной токовой защиты [4]:

$$I_{1 \max} = 1, I_{C3}. \tag{6.1}$$

Для дифференциальной защиты и отсечки $I_{1\max}$ определяют по максимальному току внешнего КЗ.

$$I_{1 \text{max}} = k_{\text{a}} I_{\text{k max}}^{(3)}$$
 (6.2)

где k_a – коэффициент апериодической составляющей тока КЗ. Для защит с временем действия менее 0,2 с k_a =2. Если $t_{c,3}$ >0,2 с, или в составе защит имеется БНТ, k_a =1.

Определяется расчётная кратность первичного тока

$$k_{\text{pac4}} = \frac{I_{1 \text{ max}}}{\alpha I_{1 \text{ TT HOM}}}, \tag{6.3}$$

где α =0,8 — коэффициент, учитывающий возможность отклонения кривых предельной кратности тока от действительных допустимых на 20%; $I_{1\text{TT HOM}}$ — первичный номинальный ток трансформатора тока.

По кривым предельной кратности [3,4] определяется допустимая вторичная нагрузка трансформатора тока $Z_{2\,\mathrm{доп}}$.

Определяется действительная нагрузка $Z_{\rm H}$. Сопротивление нагрузки зависит от схемы соединения трансформаторов тока и вида КЗ. При расчёте принимается наибольшее значение сопротивления.

Сопротивление проводов, Ом

$$R_{\rm np} = \frac{\ell}{\gamma S} \,, \tag{6.4}$$

где γ - удельная проводимость материала провода, м/Ом·мм²; медь – 57; алюминий – 34,5; l – длина провода (определяется по плану РУ), м; S – поперечное сечение проводника, мм².

Сопротивление реле, Ом

$$Z_p = S/I_{\rm H}^2 \,, \tag{6.5}$$

где S – мощность срабатывания реле, BA; $I_{\rm H}$ – номинальный ток реле при котором задана потребляемая мощность, A.

Переходное сопротивление контактов реле R_{κ} =0,05 Ом.

Для упрощения расчётов все сопротивления складываются арифметически

$$Z_{\rm H} = R_{\rm mp} + Z_{\rm p} + R_{\rm k}. \tag{6.6}$$

6.4. Проверка защит и выводы

Проверка защит осуществляется по коэффициенту чувствительности $k_{\rm q}$. Защита считается удовлетворительной, если расчётные значения $k_{\rm q}$ больше нормируемого по ПУЭ. Выводы делаются об эффективности действия защит в основной и резервной зонах.

Для защит с относительной селективностью должны быть установлены выдержки времени срабатывания защит, построены карты селективности. Оценка защит по их быстродействию должна осуществляться с учётом влияния полученных выдержек времени на устойчивость параллельной работы синхронных генераторов электростанций и влияния их на термическую стойкость защищаемых элементов сети.

7. ЗАЩИТА СИЛОВОГО ТРАНСФОРМАТОРА

7.1. Токовые защиты трансформаторов

Токовые защиты трансформаторов (МТЗ и отсечка) [3] применяются на трансформаторах любой мощности. Для трансформаторов небольшой мощности, на которых не установлена дифференциальная защита, а выдержка времени МТЗ не превышает 0,5 с, максимальная защита является основной. В остальных случаях МТЗ выполняет роль резервной защиты. МТЗ и отсечка устанавливаются на двухобмоточных трансформаторах со стороны питания. На трансформаторах с расщеплёнными обмотками МТЗ устанавливается как со стороны высокого напряжения, так и на выводах обмоток низшего напряжения.

Схема соединения трансформаторов тока выбирается в зависимости от следующих факторов [3]:

- -режима работы нейтрали сети в месте установки защиты;
- -группы соединения обмоток трансформатора;
- -требований к чувствительности и надёжности защиты.

Распределение токов в реле при двухфазном и однофазном КЗ на вторичной стороне приведено в табл. 7.1.

Таблица 7.1 Распределение токов в реле при двухфазном и однофазном КЗ

т аспределение токов в реме при двухфизном и однофизном ко				
Схема МТЗ	$k_{\rm ex}$	В месте установки защиты или за трансформатором Y/Y-0(12)	$Y_{\scriptscriptstyle H}\!/\Delta$ -11	
Полная звезда	1	$I_{\rm p} = \frac{\sqrt{3}I_{\rm K}^{(3)}}{2n_{\rm T}}$	$I_{\rm p} = \frac{I_{\rm k}^{(3)}}{2n_{\rm T}}$	
Неполная звезда с двумя реле	1	$I_{\rm p} = \frac{\sqrt{3}I_{\rm K}^{(3)}}{2n_{\rm T}}$	$I_{\rm p} = \frac{0.5I_{\rm k}^{(3)}}{n_{\rm T}}$	
Неполная звезда с тремя реле		$2n_{\mathrm{T}}$	$I_{\rm p} = I_{\rm \kappa}^{(3)} / n_{\rm T}$	
Треугольник с тремя реле	$\sqrt{3}$	$I_{\rm p} = \frac{\sqrt{3}I_{\rm K}^{(3)}}{n_{\rm T}}$	$I = \frac{1.5I_{\text{\tiny K}}^{(3)}}{1.5I_{\text{\tiny K}}^{(3)}}$	
Треугольник с дву- мя реле	ν3	$I_{\rm p} = \frac{\sqrt{3}I_{\rm k}^{(3)}}{2n_{\rm T}}$	$I_{\rm p} = \frac{1.5I_{\rm K}^{(3)}}{n_{\rm T}}$	
На разность токов фаз A и C	$\sqrt{3}$	$I_{\rm p} = \frac{\sqrt{3}I_{\rm k}^{(3)}}{2n_{\rm T}}$	Не применяется	

7.2. Расчёт максимальной токовой защиты и отсечки на стороне ВН

Для двухтрансформаторной подстанции, при раздельной работе трансформаторов на стороне низкого напряжения и ABP на секционном выключателе, максимальный нагрузочный ток определяется по формуле:

$$I_{\text{Harpmax}} = 0.7k_{\text{C3II}}I_{\text{HOMTD}} + 0.7I_{\text{HOMTD}},$$
 (7.1)

где $k_{\rm csn}$ – коэффициент самозапуска электродвигателей; $I_{\rm hom\ rp}$ – номинальный ток трансформатора.

Приближенный расчёт коэффициента самозапуска производится при учёте промышленной нагрузки сопротивлением обобщённой нагрузки $X_{*\text{нагр}}$ =0,35.

$$X_{\text{Harp}} = \frac{X_{*_{\text{HAIP}}} \left[U_{\text{cpBH}} (1 - \Delta U_{*_{\text{PIIH}}}) \right]^2}{S_{_{\text{HOM TD}}}},$$
 (7.2)

где $U_{\text{ном вн}}$ – номинальное напряжение обмотки ВН трансформатора, кВ; $S_{\text{ном}}$ – номинальная мощность трансформатора, МВА.

Ток самозапуска определяется как ток трёхфазного КЗ

$$I_{\text{c3II}} = \frac{U_{\text{HOM}}}{\sqrt{3}(X_{\text{pe3max}} + X_{\text{Tp max}} + X_{\text{Harp}})},$$
 (7.3)

где $X_{
m pe3\ max}$ — результирующее сопротивление системы в максимальном режиме, Ом; $X_{
m pe3\ max}$ — сопротивление трансформатора в максимальном режиме, Ом.

Коэффициент самозапуска определяется по формуле

$$k_{\rm csin} = \frac{I_{\rm csin}}{0.7I_{\rm Hom\, Tp}}$$
 (7.4)

Ток срабатывания защиты определится по формуле

$$I_{\text{c.3}} = \frac{k_{\text{H}}I_{\text{Harpmax}}}{k_{\text{-}}}, \qquad (7.5)$$

где $k_{\rm H}$ – коэффициент надёжности отстройки, $k_{\rm H}$ =1,1-1,2; $k_{\rm B}$ – коэффициент возврата, $k_{\rm B}$ =0,85.

Ток срабатывания реле защиты

$$I_{\rm cp} = \frac{k_{\rm cx}I_{\rm c.3}}{n_{\rm TT}} \,. \tag{7.6}$$

В соответствии с выбранной схемой защиты следует выбрать тип реле. Уставка по току срабатывания находится путём округления полученного тока срабатывания до ближайшего большего значения, которое можно установить по шкале уставок реле.

Чувствительность МТЗ оценивается коэффициентом чувствительности

$$k_{\rm q} = \frac{I_{\rm p.min}^{(2)}}{I_{\rm cp}},$$
 (7.7)

где $I^{(2)}_{\rm p\ min}$ — минимальный ток, протекающий по реле при двухфазном КЗ на выводах вторичной обмотки, определяется по формулам в табл. 7.1 в зависимости от схемы соединения трансформаторов тока.

Защита считается достаточно чувствительной, если $k_{\rm q}{>}1,5$ в основной зоне и $k_{\rm q}{>}1,2$ для резервной зоны (в конце отходящей линии - точка ${\rm K}_3$).

Для повышения чувствительности следует применять MT3 с блокировкой по напряжению.

$$I_{\text{c.3}} = \frac{k_{\text{H}} I_{\text{длитнорм}}}{k_{\text{s}}}, \tag{7.8}$$

где $I_{\text{длит норм}}$ – ток нагрузки длительно нормального режима (без учёта самозапуска $I_{\text{длит норм}}$ = 1,4 $I_{\text{ном тр}}$).

Уставка реле РН-54 по напряжению

$$U_{\rm cp} = \frac{U_{\rm pa6min}}{k_{\rm H} k_{\rm B} n_{\rm H}},\tag{7.9}$$

где $U_{\rm pa6\;min}$ =0,95 $U_{\rm HOM}$ – минимальное рабочее напряжение, В; $k_{\rm H}$ =1,2; $k_{\rm B}$ =1,15.

Для трансформатора с расщеплённой обмоткой низкого напряжения МТЗ устанавливается также на стороне НН. Расчёт защиты ведётся по изложенной выше методике, но в формуле (7.1) следует принять номинальный ток обмотки НН, т.е. $-0.5\ I_{\text{HOM TD}}$.

При оценке защиты цехового трансформатора или трансформатора собственных нужд со схемой соединения $Y/Y_{\rm H}$, следует проверить чувст-

вительность МТЗ к однофазному КЗ за трансформатором.

$$I_{\kappa}^{(1)} = \frac{U_{\phi}}{1/3Z_{0rr}^{(1)}},$$
 (7.10)

где U_{Φ} – фазное напряжение на стороне НН, В; $1/3~Z^{(1)}_{0\text{тр}}$ – сопротивление нулевой последовательности, приводится в справочных данных, Ом.

Ток однофазного КЗ, приведенный к стороне ВН:

$$I_{\text{\tiny K BH}}^{(1)} = \frac{I_{\text{\tiny K}}^{(1)} \cdot U_{\phi}}{U_{\text{\tiny CD BH}} / \sqrt{3}}.$$
 (7.11)

Ток в реле для трансформаторов со схемой соединения обмоток Y/Y_0 (для двухрелейной схемы)

$$I_{\rm p} = \frac{I_{\rm K}^{(1)}}{3n_{\rm m}};\tag{7.12}$$

для схемы ∆/Y₀

$$I_{\rm p} = \frac{I_{\rm K}^{(1)}}{\sqrt{3}n_{\rm T}}.$$
 (7.13)

Если коэффициент чувствительности основной защиты недостаточен, устанавливается специальная защита нулевой последовательности на стороне 0,4 кВ, предназначенная для работы при однофазном КЗ.

Ток срабатывания защиты отстраивается от наибольшего допустимого тока небаланса в нулевом проводе в нормальном режиме ($I_{\rm H6}\!\!=\!\!0,\!25I_{\rm HOM.Tp}$ для трансформаторов Y/Y $_0$ и $0,\!75$ $I_{\rm HOM.Tp}$ для Δ /Y $_0$).

$$I_{\rm c.3}^{(1)} = k_{\rm H} I_{\rm H6} = 0.5 I_{\rm HOMTD}.$$
 (7.14)

Чувствительность защиты определяется как

$$k_{\rm q} = \frac{I_{\rm g}^{(1)}}{I_{\rm gg}^{(1)}} \ge 1.5$$
 (7.15)

Выдержки времени МТЗ трансформатора должны быть согласованы между собой и временем действия защит на отходящих линиях со стороны низкого напряжения понизительного трансформатора. Необходимо учитывать также время действия защит секционных выключателей.

На силовых трансформаторах со стороны источника питания устанавливается отсечка без выдержки времени. По условиям селективности ток срабатывания отсечки выбирается большим максимального тока КЗ на выводах вторичной обмотки.

$$I_{c,3} = k_{\rm H} I_{\rm K2\ max(Bax)}^{(3)},$$
 (7.16)

где $k_{\rm H}{=}1,3{-}1,4$ для реле типа РТ-40; $k_{\rm H}{=}1,5{-}1,6$ для реле типа РТ-80 или РТМ

Ток срабатывания реле и уставка отсечки определяются также, как и для MT3 (7.6).

Чувствительность токовой отсечки определяется по току наиболее неблагоприятного вида повреждения, как правило, двухфазного КЗ в месте установки отсечки в минимальном режиме работы системы.

$$k_{\rm q} = \frac{\sqrt{3}}{2} \cdot \frac{I_{\rm p\,min}}{I_{\rm c.p}},\tag{7.17}$$

где

$$I_{\text{p min}} = \frac{\sqrt{3}k_{\text{cx}}I_{\text{Kl min}}}{2n_{\text{TT}}}.$$
 (7.18)

7.3. Дифференциальная защита трансформатора

7.3.1. Область применения

Дифференциальная (продольная) токовая защита является основной быстродействующей защитой трансформаторов от внутренних повреждений.

Для того, чтобы дифференциальная защита не срабатывала при нагрузке и внешних КЗ, необходимо уравновесить вторичные токи в плечах защиты, добиваясь отсутствия тока в реле. Токи разных обмоток трансформатора не равны по величине и в общем случае не совпадают по фазе. Угол сдвига фаз зависит от группы соединения трансформаторов.

Компенсацию сдвига токов по фазе осуществляют выбором схем соединения трансформаторов тока, установленных на различных сторонах силового трансформатора.

Компенсация неравенства первичных токов силовых трансформаторов достигается подбором коэффициента трансформации трансформаторов тока дифференциальной защиты и параметрами дифференциального реле. Коэффициенты трансформации трансформаторов тока $n_{\rm TT1}$ и $n_{\rm TT2}$ выбирают с таким расчетом, чтобы вторичные токи $I_{\rm B1}$ и $I_{\rm B2}$ в плечах за-

щиты при нагрузке и внешнем КЗ были равны.

При соединении обмоток силового трансформатора Y/Y отношение первичных токов должно быть равно отношению коэффициентов трансформации.

При соединении обмоток силового трансформатора Y/Δ ток в плече, к которому питание подается от трансформаторов тока, включенных в треугольник или звезду, равен соответственно

$$\frac{I_1}{n_{\text{TT1}}} \sqrt{3}$$
 и $\frac{I_2}{n_{\text{TT2}}}$.

Из равенства

$$\frac{I_1}{n_{\text{TT1}}}\sqrt{3} = \frac{I_2}{n_{\text{TT2}}}$$

следует

$$\frac{n_{\text{TT2}}}{n_{\text{TT1}}} = \frac{I_2}{I_1 \sqrt{3}} = \frac{N}{\sqrt{3}}.$$

Задаваясь одним из коэффициентов трансформации трансформатора тока, можно найти расчетное значение второго. Найденный таким образом $n_{\rm TT}$, как правило нестандартный, поэтому используют стандартные коэффициенты трансформации с ближайшим к расчетному значению. Компенсация оставшегося неравенства осуществляется с помощью уравнительных обмоток дифференциального реле.

В зависимости от мощности трансформаторов и уровней токов КЗ дифференциальная защита может быть выполнена в трёх различных исполнениях:

- дифференциальная токовая отсечка, в которой не предусматривается специальных мер по ограничению влияния апериодических токов КЗ и тока намагничивания;
- дифференциальная защита с реле типа РНТ-565, в которых исключается влияние апериодических токов КЗ и тока намагничивания (БНТ), а также выравниваются токи в плечах дифференциальной защиты;
- дифференциальная защита с реле типа ДЗТ, в которых, по сравнению с реле РНТ повышается чувствительность дифференциальной защиты за счёт уменьшения тока срабатывания. Торможение реле при увеличении тока внешнего КЗ автоматически увеличивает ток срабатывания защиты при увеличении тока внешнего КЗ.

Учитывая, что надежность и экономичность дифференциальной защиты зависит от способа повышения её чувствительности, следует по-

следовательно рассмотреть три вида дифференциальной защиты трансформатора и выбрать тот, который обеспечивает достаточный коэффициент чувствительности $k_{\rm q} \! \geq \! 2$.

7.3.2. Дифференциальная токовая отсечка

Применяется на трансформаторах мощностью до 25 MBA с обычными реле тока (например, PT-40), отстроенными от бросков тока намагничивания и переходных значений тока небаланса, если при этом обеспечивается требуемая чувствительность защиты.

Ток срабатывания защиты дифференциальной отсечки выбирается большим из двух значений:

- по условию отстройки от броска тока намагничивания трансформатора

$$I_{c.3} = (3 \div 4)I_{\text{HOMTP}};$$
 (7.19)

- по условию отстройки от тока небаланса

$$I_{\text{c.3}} = k_{\text{H}} \left(\Delta f_{\text{выр}} + \Delta U_{\text{per}} + k_{\text{a}} k_{\text{одн}} \varepsilon \right) \frac{I_{\text{к max}}^{(3)}}{100 n_{\text{r}}},$$
 (7.20)

где $\Delta f_{\text{выр}} = [(I_1 - I_2)/I_1] \cdot 100\%$; $\Delta U_{\text{рег}}$ – диапазон регулирования РПН в одну сторону, %; $k_{\text{a}} = 1,8$ -2; $k_{\text{одн}} = 1$; $\epsilon = 10$ %; $k_{\text{н}} = 1,3$.

Следует учитывать, что погрешность выравнивания $\Delta f_{\rm выр}$ может быть устранена специальными выравнивающими автотрансформаторами, включенными в схему защиты, т.е. $\Delta f_{\rm выр}$ можно принять равной нулю.

Если коэффициент чувствительности отсечки $k_{\rm q}{<}2$, следует рассмотреть схему дифференциальной защиты с реле типа РНТ.

7.3.3. Дифференциальная защита трансформаторов с реле типа PHT-565

Реле типа РНТ имеет быстронасыщающийся трансформатор тока БНТ и короткозамкнутую обмотку, ограничивающие влияние апериодических токов внешних КЗ и токов намагничивания на ток срабатывания дифференциальной защиты.

Ток срабатывания защиты отстраивается от максимального расчётного тока небаланса.

Первичный ток небаланса без учёта составляющей, обусловленной погрешностью выравнивания, определяется по формуле:

$$I_{\text{H}6} = I'_{\text{H}6} + I''_{\text{H}6} = \left(\Delta U_{\text{per}} + k_{a}k_{\text{одH}}\varepsilon\right)I_{\text{K2 max}}^{(3)},$$
 (7.21)

где $k_a = 1$, $k_{\text{одн}} = 1$, $\epsilon = 0, 1$.

Предварительное значение тока срабатывания выбирается большим из двух условий:

- по условию отстройки от тока небаланса

$$I_{c3} \ge k_{\rm H6} I_{\rm H6} \,, \tag{7.22}$$

где $k_{\rm H}$ - коэффициент надежности, учитывающий ошибку реле и необходимый запас, принимается равным 1,3 для реле РНТ;

- по условию отстройки от броска тока намагничивания

$$I_{\text{c.3}} \ge k_{\text{H}} I_{\text{HOM,TD}}, \tag{7.23}$$

где $k_{\rm H}$ - коэффициент отстройки защиты от бросков тока намагничивания, в практических расчетах для дифференциальной защиты с реле серии РНТ обычно принимается равным 1,3.

На основании расчетов значения коэффициента отстройки $k_{\rm H}$ могут приниматься несколько меньшими, особенно для защит трансформаторов, электрически удаленных от генерирующих источников [3]. Для этого производится уточнение коэффициента отстройки $k_{\rm H}$ по следующим эмпирическим выражениям.

Для РНТ
$$k_{\rm H}$$
=1,7-2.8 x_{κ^*} .

Значение
$$x_{_{\mathrm{K}^*}} = x_{_{\mathrm{K}}}/x_{_{\mathrm{\tilde{0}}}}$$
,

где $x_6 = U_{\text{ном}}^2 / S_{\text{ном.тр}}$; $U_{\text{ном}}$ – номинальное (среднее) междуфазное напряжение трансформатора, кВ; $S_{\text{ном.тр}}$ – полная мощность трансформатора, МВА.

Значение

$$x_{\rm K} = x_{\rm 1c} + (1,1 \div 1,15) x_{\rm B}^{(1)},$$

где x_{1c} – сопротивление прямой последовательности питающей энергосистемы до точки подключения трансформатора, Ом; $x_{\rm B}^{(1)}$ - индуктивное сопротивление включаемой обмотки трансформатора при полном насыщении его магнитопровода, Ом.

Предварительное значение этого сопротивления в относительных единицах или в процентах определяется по эмпирическому выражению: $x_{_{\rm B}}^{(1)}$,% = $(12.7 + u_{_{\rm K}})/1.35$, где $u_{_{\rm K}}$ - напряжение короткого замыкания в процентах или в относительных единицах из паспорта трансформатора.

Затем значение $x_{\rm B}^{(1)}$ определяется в именованных единицах (Ом), отнесенных к номинальному напряжению стороны ВН:

$$x_{\rm B}^{(1)} = x_{\rm B}^{(1)}, \% \frac{U_{\rm cp. HoM}^2}{100 S_{\rm HoM}}.$$

Если в результате расчета x_{K^*} окажется, что $x_{K^*} > 0,3$, то рекомендуется принимать $k_H = 0,9$ для PHT-560.

Предварительная проверка чувствительности защиты для 2-фазного K3 в т. K_2 (см. табл. 7.1).

$$k_{\rm q} = \frac{I_{\rm p\,min}}{I_{\rm cp}}.$$

Если предварительный коэффициент чувствительности $k_{\rm q} > 2$, определяется число витков уравнительных обмоток реле РНТ.

Расчёт начинается с выбора числа витков неосновной стороны ВН, так как это питающая сторона с регулируемым напряжением РПН. Результаты расчёта сводятся в табл. 7.3, приведенную в контрольном примере по расчёту дифференциальной защиты трансформатора.

Сходимость результатов расчёта проверяется по равенству намагничивающих сил уравнительных обмоток реле РНТ.

$$I_1 W_{\text{vp1}} \approx I_2 W_{\text{vp2}}.\tag{7.24}$$

Результирующий коэффициент чувствительности определяется с учётом $I^{''}_{\ \ \ \ \ \ \ }$ обусловленным погрешностью выравнивания токов уравнительными обмотками $W_{\ \ \ \ \ \ }$

$$I_{\text{c.p Heoch}} = \frac{F_{\text{c.p}}}{W_{\text{Heoch}}}, \tag{7.25}$$

где $F_{\rm c.p}{=}100~{
m A}{}^{\cdot}{
m B}$ ит. — намагничивающая сила реле РНТ; $W_{
m Heoch}$ — число витков уравнительной обмотки в плече дифференциальной защиты ВН.

Если чувствительность дифференциальной защиты с реле РНТ-565 недостаточна, следует рассмотреть дифференциальную защиту трансформатора с реле типа ДЗТ.

7.3.4. Дифференциальная защита трансформатора с реле типа ДЗТ

Повышение чувствительности дифференциальной защиты дости-

гается за счёт использования тормозной обмотки, которая обеспечивает автоматическую отстройку тока срабатывания от тока небаланса при внешних КЗ. Тормозная обмотка для двухобмоточных трансформаторов (или трансформаторов с расщеплёнными обмотками) включается в плечо дифференциальной защиты питаемой стороны.

Ток срабатывания защиты отстраивается только от броска тока намагничивания при включении трансформатора под напряжение.

$$I_{c.3} = k_{\rm H} I_{\rm HOMTD},$$
 (7.26)

где $k_{\rm H} = 2,1-3,7 \ x_{\rm K}^*$;

$$x_{_{\mathrm{K}^*}} = \frac{x_{_{\mathrm{K}}} S_{_{\mathrm{HOM.TP}}}}{U_{_{\mathrm{cp}}}^2};$$
 $x_{_{\mathrm{K}}} = x_{_{1c}} + (1,1 \div 1,15) x_{_{\mathrm{B}}}^{(1)}.$

где x_{1c} – результирующее сопротивление до точки подключения трансформатора, ($x_{pes\ min}$), Ом; $x^{(1)}_{k^*}$ индуктивное сопротивление включаемой под напряжение обмотки при полном насыщении магнитопровода, Ом.

Если окажется, что $x_{\text{K}} > 0.3$, то для ДЗТ-11 $k_{\text{ч}} = 1$. По эмпирической формуле

$$x_{\rm B}^{(1)} = (12,7 + u_k)/1,35,(\%),$$

где u_k – напряжение КЗ в процентах.

$$x_{\rm B}^{(1)} = x_{\rm B*}^{(1)} \frac{U_{\rm cp}^2}{100 S_{\rm HOM\,TD}}.$$

Так же, как и для реле типа РНТ, производится расчёт числа витков уравнительных обмоток (см. пример). Число витков тормозной обмотки реле ДЗТ определяется по формуле

$$W_{\rm T} = k_{\rm H}^{"} I_{\rm H6} W_{\rm p} / (I_{\rm K MAKC} tg\alpha),$$
 (7.27)

где $I_{\rm H\delta}$ — первичный ток небаланса, А; $W_{\rm p}$ — расчётное число витков рабочей обмотки реле на стороне, где включена тормозная обмотка, НН. Принимается ближайшее большее число витков тормозной обмотки ($W_{\rm T}=1,3,5,7,9,11,13,18,24$); $k_{\rm H}=1,5$ — коэффициент надёжности; $tg\alpha=0,75$ -0,8 для реле типа ДЗТ-11.

Расчёт защиты заканчивается проверкой её чувствительности, причём ток срабатывания реле

$$I_{\rm cp} = 100/W_{\rm Heoch}$$
.

7.3.5. Дифференциальная защита трансформатора с терминалами SEPAM 1000+ серии Т87

Дифференциальная защита терминала SEPAM Т87 выполнена пофазной [12]. Она включает дифференциальную отсечку и чувствительную дифференциальную защиту с процентной тормозной характеристикой и блокировками по второй и пятой гармоникам тока. Тормозная характеристика, представляющая зависимость тока срабатывания от тормозного тока, имеет три участка: горизонтальный и два наклонных, проходящих через начало координат. Горизонтальный участок соответствует отсутствию торможения. Величина дифференциального тока горизонтального участка определяет чувствительность защиты. Горизонтальный участок, крутизна наклонных частей и точка изменения крутизны регулируются. В качестве тормозного тока используется абсолютное значение наибольшего тока двух сторон силового трансформатора (рис. 7.1).

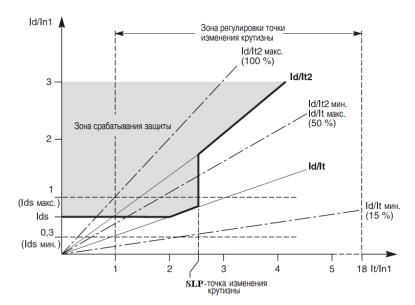


Рис.7.1. Тормозная характеристика дифференциальной защиты трансформатора SEPAM T87

Вычисление дифференциального и тормозного токов производится после выравнивания вторичных токов трансформаторов тока по величине

и по углу (в зависимости от группы соединения обмоток силового трансформатора), которое выполняется терминалом программным путём. Поэтому со всех сторон силового трансформатора трансформаторы тока должны соединяться по схеме полной «звезды», что обеспечивает и снижение расчетной нагрузки на трансформаторы тока. Единственным условием возможности выравнивания токов по величине является требование, чтобы номинальные токи трансформаторов тока находились в диапазоне (0,1...2,5) номинального тока силового трансформатора.

Тормозная характеристика терминала приводится в осях $I_{\rm д}/{\rm I}_{\rm homl}$ и $I_{\rm т}/I_{\rm homl}$, в относительных единицах, значениях тока, приведенных к номинальному току первичной обмотки силового трансформатора.

Для отстройки от броска тока намагничивания при включении трансформатора под напряжение фирмой Schneider Electric использован способ замера в дифференциальном токе величины тока второй гармоники, которая появляется при включении трансформатора под напряжение.

Блокировка дифференциальной защиты в режиме перевозбуждения силового трансформатора выполнена путем фиксации в дифференциальном токе пятой гармоники.

Для предотвращения ложной работы при неисправностях токовых цепей предусмотрена специальная блокировка, выявляющая обрыв фазы трансформаторов тока сторон силового трансформатора.

Наряду с традиционной отстройкой от включения трансформатора под напряжение и от токов небаланса режимов путем задания пользователем определенной тормозной характеристики, уставки токовой отсечки и уставок 2 и 5 гармоник фирма Schneider Electric предлагает новое направление в создании цифровых реле — самоадаптирующихся устройств на основе искусственной нейронной сети.

Традиционный алгоритм предполагает попарное сравнение входных параметров, необходимых для работы дифференциальной защиты, с заданными пороговыми значениями (уставками). Пороговые значения определяются на основе опыта эксплуатации и в ряде случаев не являются оптимальными, т.к. часто принимаются с большим запасом и не учитывают влияние остальных параметров. Например, блокировка дифференциальной защиты по 2 гармонике может замедлить работу защиты изза насыщения трансформаторов тока при внутреннем повреждении с большими токами короткого замыкания. Замедление действия защиты приведет к увеличению размеров повреждения и увеличению стоимости ремонта. Данный недостаток отсутствует в методе нейронной сети, который определяет необходимость действия на отключение или блокировку на основании комплексного анализа всех входных величин, который нарабатывается в процессе обучения в реальных и моделированных условиях.

Опыт применения искусственного интеллекта в дифференциальных защитах трансформаторов показал высокую эффективность этих защит. Schneider Electric установил с 2000 г. около 1500 самоадаптирующихся дифференциальных защит и при многочисленных внешних коротких замыканиях дифференциальная защита не работала излишне, а при повреждении трансформатора в Light SESA Company (Бразилия) дифференциальная защита сработала через 0,5 периода, что значительно уменьшило размеры повреждения [12].

Таким образом, в терминале Sepam T87 предлагается выбрать вид торможения: традиционное или самоадаптирующееся. При традиционном торможении необходимо задать вид тормозной характеристики, уставки дифференциальной отсечки и уставки 2 и 5 гармоник. При использовании самоадаптирующегося торможения требуется задать только тормозную характеристику, причем только горизонтальную часть ($I_{\rm дS}$) и первую наклонную часть ($I_{\rm д}/I_{\rm T}$). Все остальные характеристики не устанавливаются. Единственное ограничение, вводимое фирмой - применение искусственной нейронной схемы возможно на тех трансформаторах, для которых амплитудное значение броска тока намагничивания не превышает 8-кратного действующего значения номинального тока силового трансформатора.

Выбор уставок срабатывания дифференциальной защиты терминала Sepam заключается в определении следующих параметров (в скобках указаны возможные пределы регулирования):

- минимальной уставки $I_{\text{дS}}$ (30%...100% I_{homl});
- крутизны тормозной характеристики первого наклонного участка $I_{_{\rm I\!I}}/I_{_{\rm T\!I}}$ (15% ...50%);
- крутизны тормозной характеристики второго наклонного участка $I_{_{\rm I\!I}}/I_{_{\rm T\!2}}$ (50%...100%);
- точки изменения крутизны SLP (нет, $I_{\text{ном}} ... 18 I_{\text{ном}}$);
- тока срабатывания дифференциальной отсечки $I_{_{\mathrm{Д.Makc}}}$ (3...18) $I_{_{\mathrm{Hom1}}}$;
- уставки по второй гармонике (нет, 5%...40%);
- уставки по пятой гармонике (нет, 5%...40%).

Тормозная характеристика должна обеспечить высокую чувствительность защиты при малых токах повреждения (ток срабатывания меньше номинального тока трансформатора) с одной стороны, а с другой стороны, несрабатывание от токов небаланса: в нагрузочном режиме, в режиме внешнего короткого замыкания и в переходных режимах внешнего повреждения, когда информационный признак насыщения трансформаторов тока, используемый терминалом Sepam (вторая гармоника тока) недостаточен для блокировки защиты. Поэтому ток срабатывания дифференциальной защиты тормозной характеристики выбирается по условию отстройки от соответствующего расчетного тока небаланса по выражению, аналогичному (7.22):

$$I_{\text{c.3}} = k_{\text{H}} \mathbf{I}_{\text{Hf.pacy}}$$
.

Для дифференциальной защиты Sepam T87 коэффициент надежности отстройки может быть принят равным $\,k_{_{\rm H}}=1,\!1\,.\,$

Расчетный ток небаланса $I_{{\rm H}{\rm 6.pac}{}^{\rm 4}}$ определяется как сумма абсолютных значений трёх составляющих тока небаланса:

$$\mathbf{I}_{\text{Hf.pac4}} = \left| I_{\text{Hf.per}} \right| + \left| I_{\text{Hf.per}} \right| + \left| I_{\text{Hf.f}} \right|, \tag{7.28}$$

где $I_{{}_{{\rm H}\tilde{0}.E}}$ - составляющая тока небаланса, обусловленная погрешностью трансформаторов тока; $I_{{}_{{\rm H}\tilde{0}.p{
m er}}}$ - составляющая, обусловленная РПН; $I_{{}_{{\rm H}\tilde{0}.f}}$ - составляющая тока небаланса, обусловленная погрешностью выравнивания плеч, погрешностью преобразования АЦП и т.п.

Составляющая, обусловленная погрешностью трансформаторов тока определяется по формуле:

$$I_{\text{H}\delta.\epsilon} = k_{\text{nep}} k_{\text{o.II}} \epsilon I_{\text{K.max}}^{(3)}, \qquad (7.29)$$

где $k_{\text{пер}}$ - коэффициент, учитывающий увеличение погрешности трансформаторов тока в переходных режимах, при оценке минимального тока срабатывания $I_{\pi S}$ дифференциальной защиты его принимают равным 1.

Составляющая тока небаланса, обусловленная регулированием напряжения определяется выражением

$$I_{\text{H6.per}} = \frac{\Delta U_{\text{per}}}{1 - \Delta U_{\text{per}}} I_{\text{k.max}}^{(3)} , \qquad (7.30)$$

где $\Delta U_{\rm per}$ - максимальное относительное изменение напряжения на стороне регулирования.

Составляющая тока небаланса, обусловленная погрешностями выравнивания, погрешностью преобразования АЦП и т.п., по данным фир-

$$I_{H\bar{0},f} = 0.02$$
 o.e.

Таким образом, общее выражение для определения тока срабатывания дифференциальной защиты терминала Sepam T87 по условию отстройки от тока небаланса:

$$I_{\text{c.3}} \ge 1, 1 \left(k_{\text{nep}} \varepsilon + \frac{\Delta U_{\text{per}}}{1 - \Delta U_{\text{per}}} + 0,02 \right) I_{\text{k. max}}^{(3)}.$$
 (7.31)

Минимальный ток срабатывания дифференциальной защиты определяет её чувствительность. Минимальное возможное значение уставки тока срабатывания в терминалах Sepam может быть выставлено равным $0.3\,I_{\text{ном.тр.}}$, т.е. минимальное значение $I_{\text{дS}}^*=30\%$. Определяется оно по выражению (7.31) при $k_{\text{nen}}=1$.

Тормозные характеристики терминала проходят через начало координат и отсекают горизонтальную часть вблизи номинального тока. При таких токах ТТ не должны насыщаться и погрешность ТТ должна быть меньше 10%. Принятая погрешность ТТ, равная 10% обеспечивает надежную отстройку от тока небаланса при токах нагрузки.

Уставка крутизны первого наклонного участка тормозной характеристики выбирается из условия, что при токах $(2...3)I_{\text{ном.тр.}}$ при высоком уровне двигательной нагрузки высока вероятность насыщения ТТ. Поэтому крутизна первого наклонного участка тормозной характеристики определяется выражением:

$$\frac{I_{\pi}}{I_{\tau}} \ge 1.1 \left(k_{\text{nep}} \cdot 0.1 + \frac{\Delta U_{\text{per}}}{1 - \Delta U_{\text{per}}} + 0.02 \right),$$
 (7.32)

где $k_{\text{пер}} = 2...2,5$.

Определение точки изменения крутизны характеристики — точки перегиба (SLP) производится из условий отстройки от броска тока намагничивания путем совместного использования фиксации появления второй гармоники и увеличения тока срабатывания за счет торможения на втором участке тормозной характеристики. Определение выполняется с учетом возможности постановки трансформатора под напряжение со стороны другой обмотки

Точка изменения крутизны тормозной характеристики (SLP) по

рекомендации фирмы Schneider Electric определяется по выражению

$$SLP \ge 2 + \frac{3}{4} \left(\min \left(I_{\text{бр.нам1}}^*; I_{\text{бр.нам2}}^* \right) \right)^{4/3} \frac{I_{\pi}}{I_{\pi}},$$
 (7.33)

где:
$$I_{\text{бр.нам1}}^* = \frac{I_{\text{бр.нам1}}}{\sqrt{2}I_{\text{1нном.т}}}$$
 и $I_{\text{бр.нам2}}^* = \frac{I_{\text{бр.нам2}}}{\sqrt{2}I_{\text{2нном.т}}}$; $I_{\text{бр.нам1}}$ - амплитудное

первичное значение броска тока намагничивания силового трансформатора со стороны первой обмотки; $I_{\rm бр. ham2}$ - амплитудное первичное значение броска тока намагничивания силового трансформатора со стороны второй обмотки (если трансформатор может поставлен под напряжение со стороны второй обмотки); $I_{\rm 1hhom. T}$ - номинальный ток силового трансформатора первой обмотки; $I_{\rm 2hhom. T}$ - номинальный ток силового трансформатора второй обмотки; $I_{\rm 2hhom. T}$ - наклон первого участка тормозной характеристики.

Крутизна второго наклонного участка тормозной характеристики $I_{_{\rm I\!I}}/I_{_{
m T\!2}}$ по рекомендации фирмы Schneider Electric принимается равной:

$$I_{\pi}/I_{\pi^2} = (60...70)\%$$
 (7.34)

Для исключения ложной работы дифференциальной защиты при включении трансформатора под напряжение, <u>необходимо</u> (по рекомендации фирмы Schneider Electric), <u>чтобы предельная кратность ТТ</u>, при которой погрешность ТТ не превышала 10%:

1) была в 3 раза больше отношения амплитуды броска тока намагничивания к амплитуде номинального тока TT при $I_{\text{бр.нам}} > 6,7 \cdot \sqrt{2} I_{\text{1нном.T}}$,

2) равнялась 20 при
$$I_{\rm 6p. ham} \! < \! 6.7 \cdot \! \sqrt{2} I_{\rm 1hhom. T}$$
 .

При отсутствии данных о предельной кратности ТТ, для оценки этого граничного условия, может быть использовано напряжение точки перегиба вольтамперной характеристики ТТ. В этом случае напряжение точки перегиба ВАХ ТТ должно быть:

1) в 3 раза больше ЭДС вторичной обмотки, вычисленной при токе броска намагничивания, а именно:

$$U_{\rm K} > 3(Z_2 + Z_{\rm H}) \cdot I_{\rm 2HHOM,T} \frac{I_{\rm 6p, Ham}}{\sqrt{2}I_{\rm 1HHOM,T}}$$
 (7.35)

при токе $\,I_{\mathrm{бр. Ham}} < 6.7 \cdot \sqrt{2} I_{\mathrm{1 HHom.T}} \,;$

2) больше ЭДС вторичной обмотки, вычисленной по формуле:

$$U_{\rm K} > (Z_2 + Z_{\rm H}) \cdot 20 \cdot I_{\rm 2HHOM,T},$$
 (7.36)

при $I_{\text{бр.нам}}$ < 6,7 \cdot $\sqrt{2}I_{\text{1нном.T}}$,

где $I_{\rm бр. нам}$ - амплитудное первичное значение броска тока намагничивания силового трансформатора; Z_2 - полное сопротивление вторичной обмотки TT; $Z_{\rm H}$ - вторичная нагрузка TT.

<u>Предельная кратность ТТ при заданной вторичной нагрузке</u> может быть определена:

- по кривым предельной кратности,
- по паспортным данным ТТ,
- по приближенной формуле.

Например, если для проверяемого ТТ отсутствует кривая предельной кратности, но известна величина номинальной предельной кратности вторичной обмотки при номинальной мощности нагрузки $S_{\text{н.ном.}}$, то величина предельной кратности при другой вторичной нагрузке может быть определена по выражению:

$$k_{10\,\phi {
m akr}} = k_{10\,{
m hom}} \frac{Z_2 + Z_{{
m H.Hom}}}{Z_2 + Z_{{
m H.dakr}}},$$
 (7.37)

где $k_{10 \phi {
m akr}}$ - номинальная предельная кратность вторичной обмотки; Z_2 - полное сопротивление вторичной обмотки TT; $Z_{
m H.Hom} = S_{
m H.Hom}/I_{
m 2\,Hom.TT}^2$ и $Z_{
m H.\phi akr}$ - полные сопротивления вторичной нагрузки при номинальной мощности и при фактической нагрузке соответственно.

Для выбора необходимых ТТ и для определения возможности использования самоадаптирующегося торможения необходимо знать величину амплитуды броска тока намагничивания. Если эта величина отсутствует в паспортных данных силового трансформатора, то её можно определить приближенно по данным питающей системы и паспортным

данным трансформатора. Для этого определяется относительное индуктивное сопротивление контура включения по выражениям [13]:

$$X_{\kappa}^* = X_C^* + k_1 \cdot X_{\rm B}^{(1)^*}, \ X_{\kappa}^* = X_C^* + k_1 \cdot X_{\rm B}^{(3)^*},$$
 (7.38)

где X_C^* - относительное индуктивное сопротивление прямой последовательности до вводов силового трансформатора, определенное по отношению к базисному сопротивлению. За базисное сопротивление принимается сопротивление, соответствующее номинальным параметрам трансформатора, $X_{\delta} = U_{\text{ном}}^2/S_{\text{ном}}; \ X_{\text{в}}^{(1)^*}, \ X_{\text{в}}^{(3)^*}$ -относительные индуктивные сопротивления трансформатора, приведенные к стороне включения напряжения при однофазном, трехфазном включении и при полном насыщении стержней и ярм магнитопровода; k_1 - коэффициент, учитывающий увеличение индуктивного сопротивления включаемой обмотки трансформатора за счёт неполного насыщения ярм его магнитопровода. Значение этого коэффициента может приниматься равным 1,1...1,15.

Относительные индуктивные сопротивления $X_{\rm B}^{(1)^*}$ некоторых российских трансформаторов приведены в [13, 14]. В случае отсутствия этих данных сопротивление $X_{\rm B}^{(1)^*}$ может быть с достаточной точностью определено по выражениям [13]:

для трансформаторов до 63 МВА

$$X_{\rm B}^{(1)*} = 0.094 + 0.74 \frac{u_{\rm K}\%}{100};$$
 (7.39)

для трансформаторов 75÷125 MBA

$$X_{\rm B}^{(1)*} = 0.158 + 0.74 \frac{u_{\rm K}\%}{100};$$
 (7.40)

где $u_{\rm k}$ % - напряжение короткого замыкания между включаемой обмоткой и внутренней обмоткой, нанесенной на стержень. Признаком внутренней обмотки является наибольшее значение $u_{\rm k}$ % между этой обмоткой и обмоткой высшего напряжения.

Сопротивление при 3-х фазном включении ориентировочно принимают равным $X_{_{\mathrm{p}}}^{(3)^{\mathrm{s}}}=1{,}3X_{_{\mathrm{p}}}^{(1)^{\mathrm{s}}}$.

Бросок тока намагничивания при 3-х фазном включении следует принимать при включении трансформаторов масляными и элегазовыми выключателями с 3-х фазным приводом. Бросок тока при однофазном включении следует принимать при включении трансформаторов воздуш-

ными и масляными выключателями с пофазными приводами.

Амплитудное значение броска тока намагничивания определяется по выражению:

$$I_{\text{ампл}} = \frac{\sqrt{2}U_{\text{лин}}(1+A)}{\sqrt{3}(X_C^* + k_1 X_B^{(1)^*}) \cdot X_6}, \tag{7.41}$$

где $U_{\text{лин}}$ - линейное напряжение со стороны включения трансформатора под напряжение; A -относительное смещение оси синусоиды по отношению к точке перегиба характеристики намагничивания.

Величина A зависит от материала магнитопровода, индукции насыщения, остаточной индукции, от однофазного или 3-х фазного броска тока намагничивания. В соответствии с рекомендациями [15] в целях повышения надежности отстройки от броска тока намагничивания для трансформаторов с холоднокатаной сталью принимают $A^{(1)}=0,39$, а для трансформаторов с горячекатаной сталью $A^{(1)}=0,25$. Если принятие таких коэффициентов приводит к загрублению защиты или к усложнению выбора TT, то следует уточнить величину $A^{(1)}$ с учетом однофазного или трехфазного броска тока намагничивания [12].

Ток срабатывания дифференциальной отсечки $I_{\text{д.макс}}$ выбирается по двум условиям отстройки:

- от броска тока намагничивания;
- от тока небаланса при максимальном токе внешнего КЗ.

По первому условию

$$I_{\text{д.макс}}^* > K_{\text{H}} \max \left(I_{\text{бр.нам1}}^*, I_{\text{бр.нам2}}^* \right),$$
 (7.42)

где $K_{_{\rm H}}$ - коэффициент надежности отстройки, $K_{_{\it H}}=1,4$, $I_{_{\it fp. \it HaMl}}^*$, $I_{_{\it fp. \it HaMl}}^*$ - амплитудное первичное значение броска тока намагничивания соответственно со стороны первой или второй обмотки, принимается большее.

По второму условию для отстройки от тока небаланса при максимальном токе внешнего К3:

$$I_{\text{ILMAKC}} > K_{\text{H}} K_{\text{H}\tilde{0}} I_{\text{K3 MAKC}}, \tag{7.43}$$

где $K_{\rm H}$ - коэффициент надежности отстройки, $K_{\rm H}=1,2$, $K_{\rm H}$ - коэффициент равный отношению амплитуды первой гармоники тока небаланса к амплитуде периодической составляющей внешнего тока КЗ. $K_{\rm H\delta}=0,7$ при установке со всех сторон силового трансформатора ТТ со вторичны-

ми токами 5A; $K_{\rm H6}=1,0\,$ при установке с одной стороны TT с вторичным током 5A, а с другой стороны – 1A; $I_{\rm кз.макc}\,$ максимальное значение периодической составляющей тока внешнего K3.

Уставку блокировки по второй гармонике можно принимать равной 15% с поперечной (общей) блокировкой.

Уставка блокировки по 5 гармонике принимается для сетевых трансформаторов – 35%, а для трансформаторов электростанций -25% с пофазной блокировкой.

7.3.6. Газовая защита трансформаторов

Применяется для защиты трансформаторов от внутренних повреждений, связанных с выделением газа и понижением уровня масла в трансформаторе. Применение газовой защиты регламентируется ПУЭ. Применяются реле германского и российского производства: реле Бухгольца - BF80/Q, РГЧЗ-66, реле российского производства - РГТ80.

7.3.7.Защита от перегрузки

Устанавливается на всех трансформаторах, имеющих релейную защиту, если по режиму работы возможны длительные, опасные перегрузки. Применяется однофазная однорелейная токовая защита, отстраивается от номинального тока трансформатора

$$I_{\text{c.3.}} = \frac{k_{\text{H}} \cdot I_{\text{HOM.Tp}}}{k_{\text{p}}},$$
 (7.43)

Защита действует на сигнал.

7.4. Пример расчёта защиты трансформатора

Выполнить расчёт уставок защит трансформатора типа ТРДН— $25000,(115\pm9\times1,78~\%)/6,3,~Y_0/\Delta-\Delta-11$

Напряжение на номинальной ступени $u_{\rm k\ BH-HH//HH}=10,5\%$, $u_{\rm K\ HH-HH}=20\%$. Результирующее сопротивление до точки КЗ К1 в максимальном режиме $x_{\rm pes\ max}=10$ Ом, в минимальном $-x_{\rm pes\ min}=12$ Ом. Трансформатор может быть поставлен под напряжение только со стороны $110\ {\rm kB}$.

7.4.1. Расчёт токов КЗ

Расчётная схема трансформатора приведена на рис.7.2.

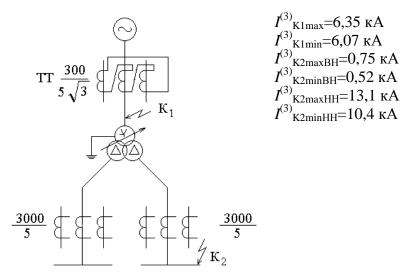


Рис. 7.2. К примеру расчета токов КЗ

Сопротивление трансформатора с расщепленной обмоткой на номинальной ступени:

$$x_{\text{BH}} = \frac{10.5 \cdot 115^2}{100 \cdot 25} = 55,54$$
 Om.

Коэффициент расщепления:

$$k_{\rm p} = 4 \cdot \left(\frac{20}{10.5} - 1\right) = 3,62;$$
 $x_{\rm h} = 55,54 \cdot \frac{3,62}{2} = 100,5 \ Om;$
 $x_{\rm b} = 55,54 \cdot \left(1 - \frac{3,62}{4}\right) = 5,28 \ Om.$

Схема замещения трансформатора для расчётов токов КЗ показана на рис. 7.3.

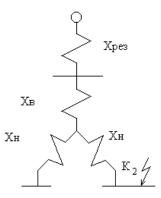


Рис. 7.3. Схема замещения трансформатора

Сопротивление трансформатора в максимальном и минимальном режимах (для двухобмоточного трансформатора сопротивление $x_{\rm Tp}$ определяется по 5.2).

$$x_{\text{rp.max}} = (100,5+5,28) \cdot (1-0,16)^2 = 74,6 \text{ OM};$$

 $x_{\text{rp.min}} = (100,5+5,28) \cdot (1+0,1)^2 = 128 \text{ OM}.$

Токи КЗ в точке K_1 в максимальном и минимальном режимах определяются по (5.12,5.13):

$$I_{K1\text{max}} = \frac{110}{\sqrt{3} \cdot 10} = 6,35 \text{ KA};$$

 $I_{K1\text{min}} = \frac{126}{\sqrt{3} \cdot 12} = 6,07 \text{ KA}.$

Токи КЗ в точке K_2 в максимальном и минимальном режимах, приведенные к ВН определяются по (5.14, 5.15):

$$I_{K2 \max \text{BH}} = \frac{110}{\sqrt{3} \cdot (10 + 74,6)} = 0,75 \text{ KA};$$

$$I_{K2 \min \text{BH}} = \frac{126}{\sqrt{3} \cdot (12 + 128)} = 0,52 \text{ KA}.$$

Токи КЗ в точке K_2 в, приведенные к стороне НН (5.16, 5.17):

$$I_{K2 \text{max BH}} = 0.75 \frac{110}{6.3} = 13.1 \text{ KA};$$

$$I_{K2 \min BH} = 0.52 \frac{126}{6.3} = 10.4 \text{ KA}.$$

7.4.2. Расчёт максимальной токовой защиты на стороне ВН

Номинальный ток трансформатора на стороне ВН для среднего положения РПН

$$I_{\text{HOM TP BH}} = \frac{25}{\sqrt{3} \cdot 115} = 0.126 \text{ KA}.$$

Сопротивление обобщенной нагрузки определяется по (7.2):

$$X_{\text{harp}} = \frac{0.35 \cdot 115^2 (1 - 0.16)^2}{25} = 130,64 \text{ Om.}$$

Ток самозапуска двигателей двух секций (7.3)

$$I_{\text{\tiny C3II}} = \frac{110}{\sqrt{3}(10 + 74.6 + 130.64)} = 0{,}295 \text{ KA}.$$

Коэффициент самозапуска (7.4)

$$k_{\text{\tiny CSII}} = \frac{0.295}{0.7 \cdot 0.126} = 3.34.$$

Максимальный нагрузочный ток определяется по (7.1):

$$I_{\text{Hard max}} = 0.7 \cdot 3.34 \cdot 0.126 + 0.7 \cdot 0.126 = 0.383 \text{ KA}.$$

Ток срабатывания защиты (7.5)

$$I_{c.3} = \frac{1,2 \cdot 0,383 \cdot 10^3}{0.85} = 540,7 \text{ A}.$$

Ток срабатывания реле (7.6) для схемы треугольника

$$I_{\rm cp} = \frac{\sqrt{3} \cdot 540,7}{300/5} = 15,6 \text{ A}.$$

Принимаем реле РТ-40/20 с уставкой 16 А.

По табл. 7.1 минимальный ток 2-фазного КЗ для схемы треугольник

$$I_{\text{pmin}} = \frac{1.5 \cdot 520}{300/5} = 13 \text{ A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{13}{16} = 0.81 < 1.5.$$

Для повышения чувствительности защиты следует применить MT3 с блокировкой по напряжению (ток срабатывания защиты определится по (7.8)).

$$I_{\text{\tiny C3II}} = \frac{1,2 \cdot 1,4 \cdot 0,126}{0.85} = 0,249 \text{ KA}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{\sqrt{3} \cdot 249}{300/5} = 7,18 \text{ A}.$$

Принимаем реле РТ 40/10 с уставкой 8 А.

Коэффициент чувствительности защиты с блокировкой по напряжению

$$k_{\rm q} = \frac{13}{8} = 1,625 > 1,5.$$

т.е. защита имеет достаточную чувствительность.

Уставка реле РН-54/160 по напряжению (7.9)

$$U_{\rm cp} = \frac{0.95 \cdot 6000}{1.2 \cdot 1.15 \cdot 6000 / 100} = 68.8 \text{ B}.$$

Принимаем реле РН-54/160 с уставкой 68 В.

7.4.3. Расчет максимальной токовой защиты на стороне НН

Номинальный ток обмотки НН

$$I_{\text{HOM TP HH}} = \frac{25}{\sqrt{3} \cdot 6.3 \cdot 2} = 1,15 \text{ KA}.$$

Сопротивление обобщенной нагрузки для одной обмотки НН

$$x_{\text{harp}} = \frac{0.35 \cdot 115^2 (1 - 0.16)^2}{25 \cdot 0.5} = 261.28 \text{ Om.}$$

Ток самозапуска двигателей одной секции

$$I_{\text{\tiny C3II}} = \frac{110}{\sqrt{3}(10 + 74,6 + 261,68)} = 0,183 \text{ KA}.$$

Коэффициент самозапуска

$$k_{\text{\tiny CSII}} = \frac{0,183}{0,5 \cdot 0,7 \cdot 0,126} = 4,15.$$

Максимальный нагрузочный ток

$$I_{\text{Harp max}} = 0.7 \cdot 4.15 \cdot 1150 + 0.7 \cdot 1150 = 4146 \text{ A}.$$

Ток срабатывания защиты

$$I_{\text{c.3}} = \frac{1,2 \cdot 4146}{0.85} = 5853 \text{ A}.$$

Ток срабатывания реле для схемы неполной звезды

$$I_{\rm cp} = \frac{1.5853}{3000/5} = 9,755 \text{ A}.$$

Принимаем реле РТ 40/20 с уставкой 10 А. Минимальный ток 2-фазного КЗ

$$I_{\text{pmin}} = \frac{\sqrt{3} \cdot 10400}{2 \cdot 3000 / 5} = 15,01 \text{ A}.$$

Коэффициент чувствительности в основной зоне

$$k_{\text{\tiny q}} = \frac{15,01}{10} = 1,5 \ge 1,5.$$

Защита имеет достаточную чувствительность.

7.4.4. Выбор выдержки времени МТЗ трансформатора

Принимаем:

- 1) Выдержку времени на отходящих линиях НН $t_1 = 0.5$ с.
- 2) MT3 на секционном выключателе вводится только на момент включения при работе ABP и не имеет выдержки времени.

Тогда:

$$t_{\text{MT3 HH}} = t_1 + \Delta t = 0.5 + 0.5 = 1 \text{ c};$$

 $t_{\text{MT3 BH}} = t_{\text{MT3 HH}} + \Delta t = 1 + 0.5 = 1.5 \text{ c}.$

7.4.5. Расчёт токовой отсечки

Отсечка устанавливается на стороне ВН. Ток срабатывания отсечки

$$I_{c3} = 1.3 \cdot 0.75 = 0.975 \text{ KA}.$$

Ток срабатывания реле при включении трансформаторов тока в треугольник

$$I_{\rm cp} = \frac{\sqrt{3} \cdot 975}{300/5} = 28.1 \text{ A}.$$

Выбираем реле тока типа РТ-40/50 с уставкой 30 А.

Минимальный ток в реле при двухфазном КЗ в точке K_1 для схемы соединения реле защиты и ТТ треугольником с тремя реле (см.табл.7.1):

$$I_{\text{pmin}}^{(2)} = \frac{\sqrt{3} \cdot 6070}{300/5} = 175 \text{ A}.$$

Коэффициент чувствительности отсечки

$$k_{\text{\tiny q}} = \frac{175}{30} = 5.8 \ge 2.$$

Отсечка обладает достаточной чувствительностью к току K3 на выводах ВН.

7.4.6. Расчёт дифференциальной защиты

Вторичные токи в плечах дифференциальной защиты приведены в табл. 7.2.

Расчёт вторичных токов

Таблица 7.2

Наименование величины	Численные значения для стороны		
	110 кВ	6 кВ	
Первичный номинальный ток трансформатора	126 A	1150 A	
Коэффициенты трансформа- ции трансформаторов тока	300/5	3000/5	
Схемы соединения обмоток трансформатора	Y	Δ	
Схемы соединения трансформаторов тока	Δ	Y	
Вторичный ток в плечах дифференциальной защиты, А	$\frac{126\sqrt{3}}{300/5} = 3,62.$	$\frac{1500 \cdot 2}{3000/5} = 3,82.$	

Расчет дифференциальной токовой отсечки

Выбор тока срабатывания дифференциальной токовой отсечки по условию отстройки от тока намагничивания силового трансформатора (7.19)

$$I_{c2} = 4.126 = 504 \text{ A}.$$

По условию отстройки от тока небаланса (7.20)

$$I_{c.3} = 1.3 \cdot (16 + 2 \cdot 1 \cdot 10) \frac{750}{100} = 351 \text{ A}.$$

Определяющим является первое условие.

Ток срабатывания реле защиты

$$I_{\rm cp} = \frac{\sqrt{3} \cdot 504}{300/5} = 14,55 \text{ A}.$$

По табл. 7.1 определяем ток в реле при двухфазном КЗ в минимальном режиме

$$I_{\text{pmin}} = \frac{1.5 \cdot 520}{300/5} = 13 \text{ A}.$$

Чувствительность отсечки

$$k_{\text{\tiny q}} = \frac{13}{14.55} = 0.89 < 2.$$

Дифференциальная токовая отсечка не обладает достаточной чувствительностью. Следует рассмотреть дифференциальную защиту с реле PHT

<u>Расчет дифференциальной защиты с реле типа РНТ</u>

Первичный ток небаланса определяется без учёта погрешности выравнивания, составляющая тока небаланса $I_{\rm H6}^{(i)}$, так как неизвестно, насколько точно удастся подобрать числа витков уравнительных обмоток реле.

$$I_{\text{H}6} = (16 + 1 \cdot 1 \cdot 10) \frac{750}{100} = 195 \text{ A}.$$

Предварительное значение тока срабатывания (без учёта $I_{\text{нб}}^{""}$) находим, принимая k_{H} =1,3.

$$I_{aa} \ge 1.3 \cdot 195 = 253.5 \text{ A}.$$

По условию отстройки от броска тока намагничивания

$$I_{c3} \ge 1.3 \cdot 126 = 163.8 \text{ A}.$$

Определяющим является первое условие.

Предварительная проверка чувствительности защиты для двухфазного КЗ (см. табл. 7.1)

$$I_{\text{pmin}} = \frac{1.5 \cdot 520}{300/5} = 13 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{\sqrt{3} \cdot 253,5}{300/5} = 7,32 \,\text{A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{13}{7,32} = 1,78 < 2.$$

Чувствительность защиты с РНТ недостаточна. Можно уточнить коэффициент надежности в формуле (7.23) по методике, аналогичной расчету реле ДЗТ [3, §2.4].

Для РНТ $k_{\rm H}$ =1,7-2,8 $x_{\rm K}$ *. При $u_{k {\rm cp}}$ =10,5% сопротивление:

$$x_{\rm B}^1 = (12,7+10,5)/1,35 = 17,2 \%;$$

 $x_{\rm B}^{(1)} = 17,2 \frac{115^2}{100 \cdot 25} = 91 \,\text{OM}.$

При $x_{\text{рез max } K1}$ =10 Ом получим

$$x_{\kappa} = 10 + 1,15 \cdot 91 = 114,65 \text{ Om};$$

 $x_{\kappa^*} = 114,65 \frac{25}{115^2} = 0,217.$

Отсюда

$$k_{H} = 1.7 - 2.8 \cdot 0.217 = 1.09.$$

Тогда

$$I_{c.3} = 1,09 \cdot 195 = 212,55 \text{ A};$$

$$I_{cp} = \frac{\sqrt{3} \cdot 212,55}{300/5} = 6,14 \text{ A};$$

$$k_{q} = \frac{13}{6,14} = 2,12 \ge 2.$$

Определяем число витков уравнительных обмоток реле РНТ.

Расчёт начинается с выбора числа витков **неосновной стороны 110 кВ**, так как это питающая сторона с регулируемым напряжением РПН. Расчёт выполнен в предположении использования обеих уравнительных обмоток, без применения дифференциальной обмотки.

Результаты расчёта сводятся в табл. 7.3.

Таблица 7.3

Определение числа витков обмоток реле РНТ-565

М -/- Об				
№ п/п		Численное значение		
1	I _{с.р неос} . (сторона ВН)	6,14 A		
2	$W_{\text{Heoc.pacy}} = F_{\text{c.p}} / I_{\text{c.p Heoc}}.$	100/6,14=16,29вит		
3	$W_{\text{неос}}$ (ближайшее меньшее число)	16		
4	$I_{\text{c.p Heoc}} = F_{\text{c.p}} / W_{\text{Heoc}}$	100/16=6,25 A		
5	$I_{\text{c.3.Heoch}(\text{сторонаяВH})} = I_{\text{с.р.неосh}} n_{\text{т}} / \sqrt{3}$	$6,25 \cdot (300/5)/\sqrt{3} = 216,8 A$		
6	$I_{\text{c3.0CH(CropoHaHH)}} = I_{\text{c3.BH}} \cdot \frac{U_{\text{cpBH}}}{U_{\text{cpHH}}}$	216,8·115/6,3=3956,8 A		
7	$W_{\text{och.pacy}} = W_{\text{Heoc}} I_{2 \text{ Heoc}} / I_{2 \text{ och}}$	16.3,62/3,82=15,16 вит.		
8	$W_{\text{осн}}$ (ближайшее целое число)	15 вит		
9	$I_{\text{H}6}'' = I_{K2 \max}^{(3)} \frac{W_{\text{осн расч}} - W_{\text{осн}}}{W_{\text{осн расч}}}$	$\left \frac{15,16-15}{15,16} \right \cdot 750 = 7,92 \ A$		
10	I _{нб} с учётом I нб	195+7,92=202,92 A		
11	$I_{c,3}$ с учётом $I_{\text{нб}}^{""}$	1,09·202,92=221,18 > 212,55		
Pac	чёт повторяется для нового значения $I_{\rm c.3\ heoc}$.			
12	I _{с.р неос} . (сторона ВН)	$221,18 \cdot \sqrt{3} / 300 / 5 = 6,38 A$		
13	$W_{\text{Heoc.pacq}} = F_{\text{c.p}} / I_{\text{c.p Heoc.}}$	100/6,38=15,67 вит.		
14	W_{Heoc} (ближайшее меньшее число)	15 вит.		
15	$I_{\text{c.p Heoc}} = F_{\text{c.p}} / W_{\text{Heoc}}$	100/15=6,67 A.		
16	I _{с.3 неос} .(сторона ВН)	$6,67 \cdot (300/5)/\sqrt{3} = 231,3 A$		
17	I _{с.3 осн.} (сторона НН)	231,3·115/6,3=4222 A		
18	$W_{\text{och.pacy}} = W_{\text{Heoc}} I_{2 \text{ Heoc}} / I_{2 \text{ och}}$	15·3,62/3,82=14,2 вит.		
	$W_{\text{осн}}$ (ближайшее целое число)	14 вит.		
	$I_{\text{H6}}^{"'} = I_{K2 \max}^{(3)} \frac{W_{\text{осн расч}} - W_{\text{осн}}}{W_{\text{осн расч}}}$	$\left \frac{14,2-14}{14,2} \right \cdot 750 = 10,56 A$		
21	$I_{ ext{hб}}$ с учётом $I^{'''}_{ ext{hб}}$	195+10,56=205,56 A		
22	I _{с.3} с учётом I нб	1,09·205,56=224 < 231,3		
	Окончательно принятые числа витков	Из п.1.6		
23	$W_{\text{осн}} = W_{\text{ypl}}$ (сторона НН)	14 вит		
	$W_{\text{неосн}} = W_{\text{ур2}}$ (сторона ВН)	15 вит		

Проверка по равенству намагничивающих сил

$$3,82 \cdot 14 \approx 3,62 \cdot 15$$
.

Чувствительность дифференциальной защиты трансформатора с реле типа РНТ на стороне ВН

$$k_{\text{\tiny q}} = \frac{1,5 \cdot 520}{300/5 \cdot 6,67} = 1,95 < 2.$$

Защита с реле типа РНТ-565 недостаточно чувствительна, следует рассмотреть дифференциальную защиту с реле типа ДЗТ.

<u>Расчёт дифференциальной защиты трансформатора с реле типа</u> ДЗТ

Тормозная обмотка реле ДЗТ при одностороннем питании включается со стороны HH.

Ток срабатывания защиты выбирается только по условию отстройки от бросков тока намагничивания. Определяется значение коэффициента надёжности $k_{\rm H}$. по формуле (7.26).

При $u_{k \text{ ср}} = 10,5\%$ сопротивление

$$x_{\rm B}^1 = (12,7+10,5)/1,35 = 17,2 \text{ %};$$

 $x_{\rm B}^{(1)} = 17,2 \frac{115^2}{100 \cdot 25} = 91 \text{ Om}.$

При $x_{\text{рез max } K1}$ =10 Ом получим

$$x_{\text{\tiny K}} = 10 + 1,15 \cdot 91 = 114,65 \text{ Om};$$

 $x_{\text{\tiny K}*} = 114,65 \frac{25}{115^2} = 0,217.$

Отсюда

$$k_{\rm u} = 2,1-3,7\cdot 0,217 = 1,3.$$

Ток срабатывания дифференциальной защиты по условию отстройки от броска тока намагничивания

$$I_{c.3} = 1.3 \cdot 126 = 163.4 \text{ A}.$$

Определяем число витков уравнительных обмоток реле ДЗТ по табл. 7.4.

Таблица 7.4 Определение числа витков $W_{\mathrm{vpl},2}$ реле ДЗТ-11

№ п/п	Обозначение величины и расчётного выражения	Численное значение
1	2	3
1	$I_{\text{cp.Heoc}} = \frac{I_{\text{c3.Heoc}} k_{\text{cx.Heoc}}}{n_{\text{t-Heoc}}}$	$\frac{163,4\sqrt{3}}{300/5} = 4,5 A$
2	$W_{\text{heoc,pac}} = F_{\text{c,p}} / I_{\text{c,p heoc}}.$	100/4,7=21,3 вит.
3	W_{Heoc} (ближайшее меньшее число)	21 вит.
4	$I_{\text{cp.och(cropohaHH)}} \! = \! I_{\text{cs}} \frac{U_{\text{BH}} \! \left(\! 1 \! - \! \Delta U \right)}{U_{\text{HH}}}$	$163,4\frac{115(1-0,16)}{6,3} = 2505 A$
5	$W_{\text{осн.pac}_{4}} = W_{\text{Heoc}} I_{2 \text{ Heoc}} / I_{2 \text{ och}}$	21·3,62/3,82=19,9 вит.
6	$W_{\text{осн}}$ (ближайшее целое число)	20 вит.

Продолжение табл. 7.4

1	2	3
7	$I_{\text{HG}}''' = I_{K2 \text{max}}^{(3)} \frac{W_{\text{och pacy}} - W_{\text{och}}}{W_{\text{och pacy}}}$	$750 \cdot \left \frac{20 - 19.9}{19.9} \right = 3.77 \ A$
8	I _{нб} с учётом I ^{'''} нб	195+3,77=198,77 A
9	$W_{\text{неосн}} = W_{\text{ур2}}$ (сторона ВН)	20 вит. 21 вит.
10	Проверка	3,62·21≈3,8·20 76,02≈76,4

По формуле (7.27) определяется число витков тормозной обмотки реле ДЗТ-11

$$W = \left[1,5 \cdot 198,77 \cdot 20 \cdot \frac{115(1 - 0,16)}{6,3} \right] / 13100 \cdot 0,75 = 9,3.$$

Принимается ближайшее большее число витков тормозной обмотки ($W_{\rm T}$ =1,3,5,7,9,11,13,18,24).

$$W_{\rm T}$$
=11 вит.

Чувствительность защиты

$$I_{\text{pmin}} = \frac{1.5 \cdot 520}{300/5} = 13 \text{ A};$$

 $I_{\text{cp}} = 100/21 = 4.76 \text{ A};$
 $k_{\text{q}} = \frac{13}{4.76} = 2.73 > 2.$

Защита удовлетворяет требованиям чувствительности.

<u>Расчет дифференциальной защиты трансформатора с примене-</u> нием терминала SEPAM 1000+ серии 80, Т87

- 1.Определение пригодности установленных трансформаторов тока
 - 1.1. По условию выравнивания вторичных токов по величине.

$$0.1 \cdot I_{\text{\tiny HOM.TP.BH}} < I_{\text{\tiny HOM.TT}} < 2.5 \cdot I_{\text{\tiny HOM.TP.BH}}$$

 $0,1\cdot 126=12,6<300<2,5\cdot 126=315$ - для TT стороны 110 кВ условие соблюдено.

 $0.1 \cdot 2 \cdot 1150 = 230 < 3000 < 2.5 \cdot 2 \cdot 1150 = 5750$ для TT стороны 6 кВ с учетом включения защиты на сумму токов расщепленных обмоток, условие также соблюдается.

1.2. По условию отстройки от броска намагничивания

Для проверки пригодности ТТ по условию отстройки от броска тока намагничивания необходимо определить амплитудную величину броска тока намагничивания. Т.к. в паспортных данных на трансформатор не приведена величина броска тока намагничивания и не приведено сопротивление включаемой обмотки трансформатора при полном насыщении, определим это сопротивление по приближенной формуле в относительных единицах, приведенных к базисному сопротивлению:

$$x_{\rm B}^{(1)*} = 0.094 + \frac{0.74 \cdot 10.5}{100} = 0.171.$$

Определяем относительное индуктивное сопротивление прямой последовательности контура включения, предварительно приведя результирующее сопротивление системы к базисным условиям:

$$X_6 = \frac{U_{\text{HOM}}^2}{S_{\text{HOM}}} = \frac{115^2}{25} = 529 \text{ Om.}$$

Сопротивление питающей системы

$$X_{\rm c}^* = \frac{10}{529} = 0.0189.$$

Тогда сопротивление контура включения по (7.38)

$$X^* = 0.0189 + 1.1 \cdot 0.171 = 0.207.$$

То же в именованных единицах:

$$X = 0.207 \cdot 529 = 109.5 \,\mathrm{Om}.$$

Амплитудное значение броска тока намагничивания определяем по (7.41), предварительно приняв коэффициент A=0,39:

$$I_{\text{бр.нам(аспл)}} = \frac{\sqrt{2} \cdot 115(1+0.39)}{\sqrt{3} \cdot 109.5} = 1192 \text{ A}.$$

Кратность амплитудного значения броска тока намагничивания по

отношению к амплитудному значению первичного номинального тока TT:

$$K_{\rm TT} = \frac{1192}{\sqrt{2} \cdot 300} = 2,81 < 6,7.$$

Следовательно, по условию отстройки от броска тока намагничивания предельная кратность TT стороны 110 кВ должна быть:

$$k_{10} \ge 20$$
.

Определяем предельную кратность TT при заданной нагрузке TT стороны 110 кВ:

$$R_{\scriptscriptstyle \mathrm{H.pacq}} = R_{\scriptscriptstyle \mathrm{\Pi p}} + R_{\scriptscriptstyle \mathrm{\Pi ep}} + R_{\scriptscriptstyle \mathrm{BX.Tepm}}$$

где $R_{\rm np}$ - сопротивление соединительных проводов (контрольного кабеля); $R_{\rm nep}$ - переходное сопротивление соединительных контактов в токовых цепях, $R_{\rm nep} = 0.05~Om$; $R_{\rm вx.терм}$ - входное сопротивление терминала, $R_{\rm вx.терм} = 0.01~{\rm Om}$.

Сопротивление контрольного кабеля

$$R_{\rm np} = \frac{l_{\rm K}}{\gamma \rm S}$$
.

Для кабеля с алюминиевыми жилами, длиной 50 м

$$R_{\text{np}} = \frac{50}{34,5 \cdot 4} = 0,36 \text{ Om.}$$

 $R_{\text{H.pacq}} = 0,36 + 0,05 + 0,01.$

Вторичная нагрузка ТТ составит

$$S_{2,\text{pacq}} = I_{2\text{HHOMT}}^2 \cdot R_{\text{H,pacq}} = 5^2 \cdot 0,42 = 10,5 \text{ BA}.$$

По кривым предельной кратности или таблицам предельной кратности (см.приложение) для ТТ типа ТВ-110-I-300/5 при вторичной нагрузке S_2 =10,5 BA определяем: k_{10} = 53 > 20. Следовательно, требование отстройки от броска тока намагничивания выполняется.

Если для проверяемого ТТ отсутствует кривая предельной кратно-

сти, но в технических данных приведены величина номинальной предельной кратности $k_{\rm 10hom}$ и значения сопротивления вторичной обмотки TT, то фактическую предельную кратность можно определить по выражению

$$k_{10\text{факт}} = \frac{k_{10\text{hom}} \Big(Z_2 + Z_{\text{h.hom}} \Big)}{Z_2 + Z_{\text{h.dakt}}}, \label{eq:k10pakt}$$

где $k_{\rm 10hom}$ - номинальная предельная кратность вторичной обмотки; $Z_{\rm 2}$ -полное сопротивление вторичной обмотки ТТ; $Z_{\rm H.Hom} = S_{\rm H.Hom}/I_{\rm Hom.TT}^2$ и $Z_{\rm H.факт}$ - полные сопротивления вторичной нагрузки при номинальной мощности и при фактической нагрузке соответственно.

Для ТТ ТВ-110-І-300/5:

$$k_{10\text{hom}} = 20; \ Z_2 = 0,051 \,\text{Om}; \ S_{2,\text{H.H}} = 40 \,\text{BA};$$

$$Z_{\text{H.Hom}} = \frac{40 \,BA}{\left(5 \,A\right)^2} = 1,6 \,\text{Om}.$$

Тогда

$$k_{10\phi \text{akt}} = \frac{20(0,051+1,6)}{0.051+0.42} = 70.$$

При такой проверке также выполняется условие $k_{10} \ge 20$.

Аналогично должны проверяться ТТ стороны 10 кВ (за исключением отстройки от броска тока намагничивания). Но учитывая небольшую вторичную нагрузку ТТ 10 кВ, пригодность ТТ будет обеспечена.

2. Проверка возможности использования самоадаптирующегося торможения

Условием использования этого торможения является требование, чтобы <u>амплитудное значение броска тока намагничивания было меньше</u> 8-кратного номинального тока трансформатора:

$$I_{\text{бр.нам(ампл)}} < 8I_{\text{ном.тр.ВH}},$$

$$I_{\text{бр.нам(ампл)}} = 1192 \text{ A},$$

$$\frac{I_{\text{бр.нам(ампл)}}}{I_{\text{ном.тр.BH}}} = \frac{1192}{126} = 9,46 > 8.$$

Следовательно, применяется традиционное торможение.

3. Определение минимального тока срабатывания, соответствующего току срабатывания защиты при отсутствии торможения по (7.31):

$$I_{\pi S} = 1.1 \cdot \left(1.0 \cdot 0.1 + \frac{0.16}{1 \cdot 0.16} + 0.02 \right) = 0.34.$$

Принимаем к установке $I_{\pi S} = 34\%$.

4. Определение крутизны первого наклонного участка тормозной характеристики в соответствии с (7.32):

$$\frac{I_{\perp}^*}{I_{\perp}} = 1.1 \cdot \left(2.0 \cdot 0.1 + \frac{0.16}{1 - 0.16} + 0.02\right) = 0.4514.$$

Принимаем
$$\frac{I_{\scriptscriptstyle \perp}^*}{I_{\scriptscriptstyle \perp}} = 45\%$$
 .

5. Точка изменения крутизны тормозной характеристики по (7.33):

Кратность амплитудного значения броска тока намагничивания по отношению к амплитудному значению номинального тока силового трансформатора:

$$I_{\text{бр.нам.1}}^* = \frac{I_{\text{бр.нам.1}}}{\sqrt{2}I_{\text{1.н.ном.}}} = \frac{1192}{\sqrt{2} \cdot 126} = 6,69;$$

$$SLP = 2 + \frac{3}{4} \cdot 6,69^{4/3} \cdot 0,45 = 6,23.$$

Принимаем к установке SLP=6.

6. Определение крутизны второго наклонного участка тормозной характеристики:

По рекомендации фирмы принимается равной (60...70)%.

Принимаем к установке
$$\frac{I_{_{\rm I}}}{I_{_{\rm T2}}} = 65\%$$
 .

- 7. Определение тока срабатывания дифференциальной отсечки
- 7.1. Отстройка от броска тока намагничивания (7.42):

$$I_{\text{MARC}} = 1,4 \cdot 6,69 = 9,37.$$

7.2. Отстройка от максимального значения тока внешнего короткого замыкания.

Максимальное значение тока внешнего КЗ будет при 3-фазном повреждении на стороне 6 кВ в режиме минимального сопротивления трансформатора: $I_{\rm k2.max\;BH}=750\;{\rm A}$, что соответствует кратности относительно номинального тока силового трансформатора

$$K = \frac{750}{126} = 5,951I_{\text{ном.тр.ВН}}$$

Ток срабатывания дифференциальной отсечки по второму условию (7.43):

$$I_{\text{д.макс}} = 1,2 \cdot 0,7 \cdot 5,95 = 5I_{\text{ном.тр.BH}}$$

Таким образом, принимаем большее значение $I_{_{\rm Д.MAKC}} = 10 I_{_{\rm HOM.Tp.\,BH}}$

8. Уставки блокировок по второй и пятой гармоникам принимаются:

$$rac{I_{2f}}{I_{1f}} = 15\%$$
 - с поперечной (общей) блокировкой;

$$\frac{I_{5f}}{I_{1f}} = 35\%$$
 - с пофазной блокировкой.

Тормозная характеристика рассчитанной дифференциальной защиты представлена на рис. 7.4.

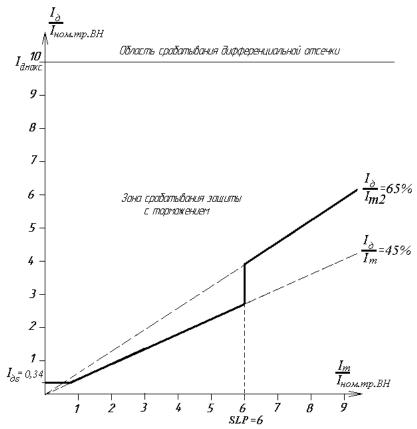


Рис. 7.4. Тормозная характеристика дифференциальной защиты трансформатора ТРДН-25000/110/6/6, выполненная на SEPAM 1000+ Т87

7.4.7. Расчётная проверка трансформаторов тока по условиям 10% погрешности (для защиты трансформатора на электромеханических элементах)

На стороне 110 кВ применяются встроенные трансформаторы тока типа ТВТ-110.

Определяется кратность первичного тока по формуле (6.3):

- для МТЗ $k=I_{1 \text{ max}}=1,1\ I_{\text{c.3}};$

$$k_{\text{pac}^{\text{q}}} = \frac{1.1 \cdot 249}{0.8 \cdot 300} = 1.14;$$

- для отсечки и дифференциальной защиты (без БНТ)

$$k_{\text{pac}^{\text{q}}} = \frac{2 \cdot 750}{0.8 \cdot 300} = 6.25.$$

По кривым предельной кратности [3,4] для трансформатора тока типа ТВТ-110 300/5:

$$k_{10}=1,14; \quad Z_{\mathrm{2H\,_{JO\Pi}}}$$
не нормирована; $k_{10}=6,25; \quad Z_{\mathrm{2H\,_{JO\Pi}}}=5$ *Ом*,

т.е. определяющим является условие работы дифференциальной защиты $Z_{2H \text{ non}} = 5 \text{ Om}$.

Для схемы треугольника с тремя реле [3, табл.1.5]

$$Z_{\text{H.pacq}} = 3r_{\text{np}} + 3Z_{\text{p1MT3}} + 3Z_{\text{p orc}} + 3Z_{\text{д3}} + Z_{\text{3an}}.$$

Провод алюминиевый сечением 4 мм², длина 50 м:

$$r = \frac{50}{34,5 \cdot 4} = 0,36 \text{ Om};$$

$$Z_{\text{PT}-40/10} = \frac{0,5}{5^2} = 0,02 \text{ Om};$$

$$Z_{\text{PT}-40/50} = \frac{0,8}{25^2} = 0,0013 \text{ Om};$$

$$Z_{\text{JJ3T}-11} \approx 0,1 \text{ Om};$$

$$Z_{\text{H.pacy}} = 3 \cdot 0,36 + 3 \cdot 0,02 + 3 \cdot 0,0013 + 3 \cdot 0,1 + 0,1 = 1,54 \text{ Om};$$

$$Z_{\text{2H pacy}} = 1,54 < Z_{\text{2H JJOII}} = 5 \text{ Om}.$$

Аналогично проводится проверка трансформаторов тока на стороне 6 кВ.

7.5. Пример расчёта защиты трансформатора собственных нужд (цехового трансформатора)

Выполнить расчёт уставок защит трансформатора типа ТМЗ-630/10, 6,3/0,4 кВ, u_k = 5,5 %, группа соединений Y/Y $_0$

7.5.1. Расчёт токов КЗ (п. 5.2.4.)

Результирующие сопротивления системы до т. K_2 :

$$X_{\text{c max }(K2)} = \frac{6300}{\sqrt{3} \cdot 13100} = 0,28 \text{ Om};$$

 $X_{\text{c min }(K2)} = \frac{6300}{\sqrt{3} \cdot 10400} = 0,35 \text{ Om}.$

Сопротивление трансформатора, приведенное к U=6,3 кВ.

$$X_{\rm rp} = \frac{5.5 \cdot 6.3^2}{100 \cdot 0.63} = 3.46 \,\mathrm{Om}.$$

При расчёте релейной защиты цехового трансформатора, необходимо учесть сопротивление кабельной линии, приведенное к напряжению 6,3 кВ.

Ток КЗ в максимальном режиме, приведенный к ВН трансформатора:

$$I_{K4 \max{(6,3)}}^{(3)} = \frac{6300}{\sqrt{3} \cdot (0,28+3,46)} = 973,7 \text{ A}.$$

Ток КЗ в минимальном режиме, приведенный к ВН трансформатора:

$$I_{K4 \min{(6,3)}}^{(3)} = \frac{6300}{\sqrt{3} \cdot (0,35+3,46)} = 954,7 \text{ A}.$$

7.5.2. Расчёт максимальной токовой защиты

Номинальный ток трансформатора на стороне 6 кВ

$$I_{\text{ном тр BH}} = \frac{0.63}{\sqrt{3} \cdot 6.3} = 0.058 \text{ KA}.$$

Сопротивление обобщённой нагрузки (7.2), приведенной к НН:

$$x_{\text{harp}} = \frac{0.35 \cdot 6.3^2}{0.63} = 22.05 \text{ Om.}$$

Ток самозапуска двигателей (7.3)

$$I_{\text{c.3II}} = \frac{6300}{\sqrt{3}(0.28 + 3.46 + 22.05)} = 141 \text{ A}.$$

Коэффициент самозапуска (7.4)

$$k_{\rm c.3} = \frac{141}{0.7 \cdot 58} = 3,47.$$

Максимальный нагрузочный ток (7.1)

$$I_{\text{Hard max}} = 0.7 \cdot 3.47 \cdot 58 + 0.7 \cdot 58 = 181.48 \text{ A}.$$

Ток срабатывания защиты (7.5)

$$I_{c.3} = \frac{1,2.181,48}{0.85} = 256,2 \text{ A}.$$

Ток срабатывания реле (7.6)

$$I_{\rm cp} = \frac{1.256,2}{100/5} = 12,81 \,\text{A}.$$

Принимаем реле РТ-40/20 с уставкой 13 А.

По табл. 7.1 минимальный ток двухфазного КЗ для схемы неполная звезда

$$I_{\text{p min}}^{(2)} = \frac{\sqrt{3.954,7}}{2.100/5} = 41,34 \text{ A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{41,34}{13} = 3,18 \ge 1,5.$$

Защита имеет достаточную чувствительность при двухфазном КЗ. При однофазном КЗ за трансформатором со схемой соединения Y/Y0 (7.10)

$$I_{\kappa}^{(1)} = \frac{230}{0.042} = 5476,2 \text{ A}.$$

Ток однофазного КЗ, приведенного к стороне 6 кВ:

$$I_{\kappa_{BH}}^{(1)} = \frac{5476,3 \cdot 0,23}{6.3/\sqrt{3}} = 345,87 \text{ A}.$$

Ток в реле

$$I_{\rm p} = \frac{345,87}{3.100/5} = 5,76 \,\text{A}.$$

Коэффициент чувствительности МТЗ на стороне 6 кВ

$$k_{\text{\tiny q}} = \frac{5,76}{13} = 0,44.$$

Для трёхрелейной схемы

$$k_{\rm q} = \frac{2 \cdot 5,76}{13} = 0,89.$$

Защита не удовлетворяет требованиям чувствительности, поэтому дополнительно устанавливается специальная защита нулевой последовательности на стороне 0,4 кВ.

Ток срабатывания защиты (7.14)

$$I_{c.3} = 0.5 \cdot 58 \cdot \frac{6.3}{0.4} = 456,75 \text{ A}.$$

Принимаем к установке в нейтрали трансформатора ТТ 400/5, ток срабатывания реле

$$I_{\rm cp} = \frac{456,75}{400/5} = 5,7 \text{ A}.$$

Принимаем к установке реле РТ-40/10 с уставкой 6 А. Коэффициент чувствительности

$$k_{\rm q} = \frac{5476,2}{456,75} = 12,0 \ge 1,5.$$

Защита удовлетворяет требованиям чувствительности.

Селективность должна быть согласована с отключающими аппаратами на 0,4 кВ.

7.5.3. Расчёт токовой отсечки

Ток срабатывания отсечки (7.16)

$$I_{63} = 1.4.973.7 = 1363.18 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{1.1363,18}{100/5} = 68,16 \,\text{A}.$$

Принимаем реле РТ 40/100 с уставкой 70 А. Ток в реле при двухфазном КЗ

$$I_{\text{p min}} = \frac{\sqrt{3} \cdot 10400}{2 \cdot 100/5} = 450 \text{ A}.$$

Коэффициент чувствительности

$$k_{_{\text{\tiny q}}} = \frac{450}{70} = 6,43 \ge 2.$$

Отсечка имеет достаточную чувствительность.

8. ЗАЩИТА КАБЕЛЬНЫХ ЛИНИЙ НАПРЯЖЕНИЕМ 6(10) кВ

8.1. Максимальная токовая защита

Для защиты от многофазных КЗ в качестве основной защиты на линиях с односторонним питанием от шин ГПП распределительной или цеховой подстанции применяется максимальная токовая защита. На кабельных линиях, выполненных двумя и большим (чётным) количеством кабелей, может применяться поперечная дифференциальная защита, токовая отсечка применяется для защиты кабелей значительной длины, на которых зона её действия не менее 20% длины линии.

Для защит кабельной линии, питающей цеховой трансформатор по схеме блока без выключателя на стороне ВН трансформатора, может быть эффективно использована комбинированная отсечка по току и напряжению.

Быстродействующая продольная дифференциальная защита применяется только в том случае, если линия включена непосредственно с шин генераторного напряжения электростанции либо заданы специальные условия для применения быстродействующих защит (пожарная безопасность, безопасность персонала и т.д.).

Защита от замыкания на землю выполняется на отключение только в случае задания специальных условий по технике безопасности (защита карьерных сетей, торфоразработок и т.д.).

8.2. Максимальная токовая защита кабельных линий

Разрабатывается схема МТЗ в зависимости от режима работы нейтрали, ответственности потребителей, вида оперативного тока.

Расчёт токов КЗ за кабелем проводится по п.5.2.3.

Ток срабатывания МТЗ отстраивается от максимального тока нагрузки в утяжелённом режиме (из курсового проекта по курсу "Электрические станции и подстанции").

$$I_{\text{c.3}} = \frac{k_{\text{H}} k_{\text{c.3}} I_{\text{Harp max}}}{k_{\text{B}}},$$
 (8.1)

где $k_{\rm H}$ =1,1÷1,2; $k_{\rm H}$ =0,85; $k_{\rm c.3\Pi}$ – коэффициент самозапуска, определяемый по току самозапуска обобщенной нагрузки $x_{\rm Harp}$ *=0,35.

$$x_{\text{\tiny Harp}} = \frac{U_{\text{\tiny cp \, HH}}^2}{S_{\text{\tiny Harpmax}}} \cdot x_{\text{\tiny Harp*}}. \tag{8.2}$$

Ток самозапуска

$$I_{\text{c.3\Pi(HH)}} = \frac{U_{\text{cp HH}}}{\sqrt{3}(x_{\text{c pe3 max (kK2}} + x_{\text{Harp}} + x_{\text{ka6}} + x_{\text{p}})}.$$
 (8.3)

Коэффициент самозапуска

$$k_{\text{c.3II}} = \frac{I_{\text{c.3II}(BH)}}{I_{\text{HAID max}}}.$$
 (8.4)

Ток срабатывания реле

$$I_{\rm cp} = \frac{k_{\rm cx}I_{\rm c.3}}{n_{\rm TT}}.$$
 (8.5)

Чувствительность защиты. Минимальный ток в реле при двухфазном КЗ за кабелем

$$I_{\text{pmin}} = \frac{\sqrt{3}I_{K3\min\text{HH}}^{(3)}}{2n_{\text{TT}}}.$$
 (8.6)

Коэффициент чувствительности

$$k_{\rm q} = \frac{I_{\rm pmin}}{I_{\rm cp}},$$

для МТЗ $k_{y} \ge 1.5$.

По условиям селективности МТЗ согласовывается по времени срабатывания с максимальным временем срабатывания защиты на цеховой подстанции

$$t_{\rm c.3} = t_{\rm mnex} + \Delta t. \tag{8.7}$$

Для согласования времени срабатывания защит с зависимой выдержкой времени или предохранителями необходимо привести их характеристики $t_{\rm c.3} = f(I_{\rm p})$ и построить на них карты селективности.

8.3. Токовая отсечка (дополнительная)

Отсечка применяется для защит линий с односторонним питанием. Для обеспечения селективности ток срабатывания отсечки отстраивается от максимального тока КЗ в конце защищаемой линии.

$$I_{c.3} = k_{\rm H} \cdot I_{K3\max({\rm HH})}^{(3)},$$
 (8.8)

где $k_{\rm H}$ =1,2-1,3 для реле РТ-40; $k_{\rm H}$ =1,5-1,6 для реле РТ-80.

Чувствительность токовой отсечки определяется для двухфазного КЗ в месте установки отсечки для минимального тока КЗ.

Минимальный ток в реле

$$I_{\text{pmin}} = \frac{\sqrt{3}I_{K2\,\text{min}\,\text{HH}}^{(3)}}{2n_{\text{TT}}}.$$
 (8.9)

Коэффициент чувствительности

$$k_{\rm q} = \frac{I_{\rm pmin}}{I_{\rm cp}},\tag{8.10}$$

Если $k_{\rm q} < 1,2$ – отсечку ставить не следует.

8.4. Комбинированная отсечка по току и напряжению

Применяется для защиты блока кабель – трансформатор. При небольшой длине линии и большой мощности трансформатора применение комбинированной отсеки позволяет произвести отстройку от КЗ за трансформатором по напряжению.

При расчёте токов К3 по п. 5.2.3, 5.2.4 в точках 3 и 4 должны быть учтены сопротивления реактора $X_{\rm p}$ (если предусматривается его установка) и сопротивление кабельной линии.

Ток срабатывания отсечки выбирается из условия обеспечения достаточной чувствительности, при двухфазном КЗ в конце защищаемой зоны в минимально режиме (точка K_3 на рис. 8.1)

$$I_{\text{c.o}} = I_{K, \min}^{(2)} / k_{\text{q(T)}},$$
 (8.11)

где $k_{\text{ч.(T)}}$ - коэффициент чувствительности отсечки по току, принимаемый равным 1,5.

Напряжение срабатывания выбирается таким образом, чтобы оно было меньше остаточного напряжения в месте установки отсечки при прохождении по линии тока КЗ, равного по значению току срабатывания отсечки:

$$U_{\text{c.o}} \le \sqrt{3}I_{\text{c.o}}(X_{\text{I}} + X_{\text{TP}})/\kappa_{\text{H}},$$
 (8.12)

где $\kappa_{\rm H} = 1, 2 \div 1, 3; X_{\rm J}, X_{\rm TD} -$ сопротивление линии и трансформатора.

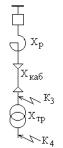


Рис. 8.1. К расчету токов КЗ

При таком выборе $U_{\text{с.o.}}$,обеспечивается отстройка (бездействие) отсечки при КЗ за трансформатором (точка K4 на рис. 8.1) в любых режимах. При токах КЗ, больших, чем $I_{\text{с.o.}}$, будет выше остаточное напряжение $U_{\text{с.o.}} \leq \sqrt{3}I_{\text{с.o.}}(X_{_{\mathrm{I}}} + X_{_{\mathrm{TP}}})$ и отсечка не будет работать по напряжению. При токах КЗ через переходное сопротивление, когда $I_{_{\mathrm{K}}} < I_{\mathrm{c.o.}}$, отсечка не работает по току.

Напряжение срабатывания отсечки $U_{\mathrm{c.o}}$ должно находиться в пределах

$$0.15U_{\text{hom}} \le U_{\text{c.o}} \le \frac{0.9U_{\text{hom}}}{K_{\text{u}} \cdot K_{\text{p}}},$$
 (8.13)

где $\kappa_{\rm H}$ =1,2; $\kappa_{\rm B}$ =1,2 для реле РН-54.

Проверяется коэффициент чувствительности по напряжению. Остаточное напряжение при КЗ в т. 3 (8.14):

$$U_{\text{oct}} \le \sqrt{3} I_{K_3 \text{ max}} (X_{\text{ka6}} + X_{\text{p}});$$
 (8.14)
 $k_{\text{q(H)}} = U_{\text{c.o}} / U_{\text{oct}} \ge 1,5.$

Верхний предел $U_{\rm c.o} \approx 0.65 U_{\rm HoM}$ (8.13) ограничивает область применения комбинированной отсечки.

8.5. Продольная дифференциальная защита типа ДЗЛ

Расчёт защиты ДЗЛ-2 состоит в выборе коэффициентов k и h комбинированного фильтра I_1 - kI_2 , применяемого в защите.

Коэффициент k=-4. Коэффициент h определяется по табл. 8.1, в зависимости от максимального вторичного тока, на который включена защита.

Чувствительность защиты проверяется при трёхфазном КЗ в конце защищаемой линии.

$$k_{\rm q} = \frac{I_{K_3\,\text{min}}^{(3)}}{I_{\Pi 3\Pi}^{(3)} \cdot n_{\rm TT}} \ge 2.$$
 (8.15)

Определение коэффициента h

Таблица 8.1

$I_{2\text{max}} = \frac{I_{K_3\text{max}}}{n_{\text{TT}}} \text{ A}$	Коэффициент <i>h</i>	Вторичный ток срабатывания защиты, $I^{(3)}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$ при $I^{(3)}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
-11		k = -4	<i>k</i> = -6
100	1	4	6,6
150	1,5	6	9,9
200	2	8	13,2

8.6. Максимальная токовая защита нулевой последовательности

Применяется для защиты от однофазных замыканий на землю с односторонним питанием.

Ёмкостный ток замыканий на землю для защищаемой кабельной линии можно определить по эмпирической формуле

$$I_{\rm c} = \frac{U_{\rm cp} \cdot l_{\rm ka6}}{10}, A, \tag{8.16}$$

где $U_{\rm cp}$ – напряжение сети, кВ; l – длина линии, км.

Через место замыкания протекает суммарный ёмкостный ток электрически связанных линий, т.е. определяемой суммарной длиной всех кабелей, подключенных к одной секции шин, без поврежденной линии.

$$I_{\rm c\Sigma} = \frac{U(l_{\rm \Sigma} - l_{\rm p})}{10}, A.$$
 (8.17)

Ток срабатывания защиты, включенной через трансформатор тока нулевой последовательности (ТНП), отстраивается от собственного ёмкостного тока линии:

$$I_{\text{c.s.}} = k_{\text{H}} \cdot k_{\text{6}} \cdot I_{\text{c}}, \tag{8.18}$$

где $k_{\rm H}$ =1,2; $k_{\rm G}$ =3-4 - коэффициент броска.

Коэффициент чувствительности

$$k_{\rm q} = \frac{I_{\rm c\Sigma}}{I_{\rm c.3}}.\tag{8.19}$$

8.7. Пример расчёта защиты кабельной линии

Выполнить расчёт уставок защит кабельной линии $2 \times ACE\Gamma(3 \times 150)$ длиной 0,6 км, напряжением 6 кВ. Максимальная нагрузка в утяжелённом режиме 3,0 МВ·А. Реактор РБ-10-1000-0,14.

8.7.1. Расчёт токов КЗ

Расчётная схема приведена на рис. 8.2.

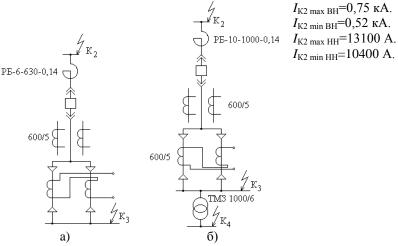


Рис. 8.2. Расчётная схема

Результирующее сопротивление системы на шинах 6 кВ:

$$\begin{split} X_{\rm cmax} &= 6300/\sqrt{3}\cdot 13100 = 0,28~{\rm OM};\\ X_{\rm cmin} &= 6300/\sqrt{3}\cdot 10400 = 0,35~{\rm OM}. \end{split}$$

Сопротивление кабельной линии

$$X_{\text{ka6}} = 0.074 \cdot 0.6 \cdot 0.5 = 0.022 \text{ Om};$$

$$X_{\text{p}} = 0.14 \text{ Om};$$

$$X_{\rm rp} = \frac{5.5 \cdot 6.3^2}{100 \cdot 1.0} = 2.18 \,\text{Om}.$$

Токи КЗ в минимальном и максимальном режимах в точках K_3 и K_4 .

$$I_{K3\text{max}} = \frac{6300}{\sqrt{3} \cdot (0,28 + 0,022 + 0,14)} = 8229 \text{ A};$$

$$I_{K3\text{min}} = \frac{6300}{\sqrt{3} \cdot (0,35 + 0,022 + 0,14)} = 7104 \text{ A};$$

$$I_{K4\text{max}} = \frac{6300}{\sqrt{3} \cdot (0,28 + 0,022 + 0,14 + 2,18)} = 1387 \text{ A};$$

$$I_{K4\text{min}} = \frac{6300}{\sqrt{3} \cdot (0,35 + 0.022 + 0,14 + 2,18)} = 1351 \text{ A}.$$

8.7.2. Расчёт максимальной токовой защиты

Максимальный нагрузочный ток

$$I_{\text{нагр макс}} = \frac{3.0}{\sqrt{3} \cdot 6.3} = 0.275 \text{ KA}.$$

Сопротивление обобщённой нагрузки $X_{\text{нагр}*} = 0.35$.

$$X_{\text{Harp}} = \frac{6.3^2}{3.0} \cdot 0.35 = 4.63 \text{ Om.}$$

Ток самозапуска двигателей

$$I_{\text{c.3II}} = \frac{6,3}{\sqrt{3} \cdot (0,28 + 4,63 + 0,022 + 0,14)} = 0,717 \text{ KA}.$$

Коэффициент самозапуска

$$\kappa_{\text{сзп}} = \frac{0.718}{0.275} = 2.61.$$

Ток срабатывания защиты

$$I_{c.3} = \frac{1.2 \cdot 2.61 \cdot 0.275}{0.85} = 1013 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{1.1013}{600/5} = 8,44 \text{ A}.$$

Выбираем реле РТ-40/20 с уставкой 9 А.

Чувствительность защиты.

Минимальный ток в реле при двухфазном КЗ за кабелем

$$I_{\text{pmin}} = \frac{\sqrt{3}}{2} \cdot \frac{7104}{600/5} = 51,27 \text{ A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{51,27}{9} = 5,7 > 1,5.$$

Защита обладает достаточной чувствительностью.

По условию селективности МТЗ отстраивается от времени действия защит на цеховой подстанции. Если кабельная линия питает цеховой трансформатор, то время срабатывания защиты можно принять 0,5 с.

8.7.3. Расчёт токовой отсечки

Ток срабатывания отсечки

$$I_{c3} = 1.3 \cdot 8229 = 10698 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{1.10698}{600/5} = 89,15 \text{ A}.$$

Уставка срабатывания реле РТ-40/100 90 А.

Чувствительность отсечки.

Минимальный ток в реле

$$I_{\text{pmin}} = \frac{\sqrt{3}}{2} \cdot \frac{10400}{600/5} = 75,06\text{A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{75,06}{90} = 0,83 < 1,2.$$

Отсечка нечувствительна к току КЗ.

8.7.4. Расчёт комбинированной отсечки по току и напряжению (для блока кабельная линия – цеховой трансформатор)

Ток срабатывания отсечки при $k_{\rm q}$ =1,5 по (8.11)

$$I_{\text{c.3}} = \frac{\sqrt{3}}{2} \cdot \frac{7104}{1.5} = 4101 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{1.4101}{600/5} = 34{,}18 \,\text{A}.$$

Уставка срабатывания реле РТ-40/50-35A. Напряжение срабатывания отсечки по (8.12)

$$U_{c.3} \le \frac{\sqrt{3} \cdot 4101(0,022 + 0,14 + 2,18)}{1,2} = 13863 \text{ B}.$$

Принимаем

$$U_{c.3} = \frac{0.9 \cdot 6.3}{1.2 \cdot 1.2} = 3.94 \text{ kB} < 13.863 \text{ kB}.$$

Напряжение срабатывания реле РН-54/160

$$U_{\rm cp} = \frac{3940}{6300/100} = 62,5 \text{ B}.$$

Остаточное напряжение в точке K_3

$$U_{\text{c.3}} = \sqrt{3} \cdot 8229 \cdot (0,022 + 0,14) = 2308 \text{ B};$$

$$k_{\text{q}} = \frac{3,94}{2,308} = 1,7 > 1,5.$$

Отсечка по току и напряжению обладает достаточной чувствительностью.

8.7.5. Расчёт продольной дифференциальной защиты

Принимаем коэффициент фильтра k=-4.

Максимальный вторичный ток, на который включается защита:

$$I_{2\text{max}} = \frac{I_{K_3 \text{ max}}}{n_{\text{TT}}} = \frac{8229}{600/5} = 68,58 \text{ A}.$$

По табл. 8.1 определяется коэффициент фильтра h=1. Вторичный ток срабатывания защиты $I_{2\,c,3}=4$ А.

$$k_{\rm q} = \frac{7104}{4.600/5} = 14.8 > 2.$$

Защита обладает достаточной чувствительностью.

8.7.6. Расчёт максимальной токовой защиты нулевой последовательности

Ёмкостный ток замыкания на землю кабельной линии

$$I_{\rm C} = \frac{6.3 \cdot 0.6 \cdot 2}{10} = 0.76 \,\text{A}.$$

Суммарный емкостной ток замыкания на землю оставшихся линий, подключенных к секции шин

$$I_{\text{C}\Sigma} = \frac{6,3(0,6 \cdot 2 \cdot 10 - 0,6 \cdot 2)}{10} = 6,8 \text{ A}.$$

$$I_{\text{C}3} = 1,2 \cdot 4 \cdot 0,76 = 3,7 \text{ A}.$$

Уставка срабатывания реле РТ-40/6 3,7A. Коэффициент чувствительности

$$k_{\text{\tiny q}} = \frac{6.8}{3.7} = 1.84 > 1.25.$$

Защита обладает достаточной чувствительностью.

9. ЗАЩИТА СЕКЦИОННОГО ВЫКЛЮЧАТЕЛЯ

9.1. Ток срабатывания защиты

Применяется максимальная токовая защита с ускорением после ABP[2,3]. Ток срабатывания защиты отстраивается от максимального тока одной секции с учётом самозапуска электродвигателей после работы ABP.

$$I_{\text{c.3}} = \frac{k_{\text{H}} \cdot k_{\text{c3}\Pi} \cdot 0.7 I_{\text{HOMTP}}}{k_{\text{p}}},$$
 (9.1)

 $k_{\text{сзп}}$ – рассчитан по (7.2÷7.4) для одной секции в п. 7.4.3.

Чтобы не увеличивать время действия защиты трансформаторов, защита секционного выключателя по схеме управления вводится только на момент его включения действием ABP или ключом управления.

Чувствительность защиты определяется по току $I^{(2)}_{K2\min}$ и току срабатывания защиты (п. 7.4.3).

9.2. Пример расчёта защиты секционного выключателя

Расчёт максимальной токовой защиты.

Номинальный ток обмотки трансформатора на стороне НН

$$I_{\text{ном тр-ра нн}} = \frac{25}{\sqrt{3} \cdot 6.3 \cdot 2} = 1.147 \text{ KA}.$$

Сопротивление обобщённой нагрузки одной секции шин НН

$$X_{\text{harp}} = \frac{0.35 \cdot 6.3^2}{25 \cdot 0.7 \cdot 0.5} = 1.59 \text{ Om.}$$

Ток самозапуска двигателей одной секции

$$I_{\text{c.3II}} = \frac{6.3}{\sqrt{3} \cdot (0.28 + 1.59)} = 1.947 \text{ KA}.$$

Коэффициент самозапуска

$$k_{\text{\tiny CSII}} = \frac{1,947}{1,147 \cdot 0,7} = 2,42.$$

Максимальный нагрузочный ток

$$I_{\text{Hard max}} = 0.7 \cdot 2.42 \cdot 1.147 + 0.7 \cdot 1.147 = 2.746 \text{ KA}.$$

Ток срабатывания защиты

$$I_{c.3} = \frac{1.2 \cdot 2746}{0.85} = 3877 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{1.3877}{3000/5} = 6,46 \text{ A}.$$

Принимаем реле PT-40/10 с уставкой 6,5 А. Минимальный ток двухфазного K3

$$I_{\text{pmin}} = \frac{\sqrt{3}}{2} \cdot \frac{10400}{3000/5} = 15,01 \text{ A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{15,01}{6.5} = 2,31.$$

Защита обладает достаточной чувствительностью.

10 ЗАЩИТА КОНДЕНСАТОРНЫХ УСТАНОВОК

Мощность конденсаторных установок, размещённых на подстанции, должна соответствовать номинальным параметрам отходящих линий с округлением до ближайших, стандартных значений.

Защита от многофазных коротких замыканий предусматривается для всей конденсаторной установки в целом.

$$I_{\text{c.3}} = k_{\text{H}} \cdot I_{\text{Ky HOM}},\tag{10.1}$$

где $k_{\rm H} = 2.0-2.5$.

Чувствительность защиты определяется по $I^{(2)}_{K2\min}$.

Защита от перегрузок предусматривается в случаях, когда возможна перегрузка конденсаторов высшими гармоническими токами.

$$I_{c.3} = 1,3 \cdot I_{\text{ky hom}};$$
 (10.2)
 $t_{c.3} = 9 \text{ c.}$

10.1. Пример расчёта защит конденсаторной установки мощностью 3150 квар (КУ-6,3-3150)

Номинальный ток конденсаторной установки.

$$I_{\text{ky hom}} = \frac{3150}{\sqrt{3} \cdot 6.3} = 289 \text{ A}.$$

<u>Максимальная токовая защита от междуфазных КЗ без выдержки времени.</u>

Ток срабатывания защиты

$$I_{c.3} = 2.5 \cdot 289 = 722.9 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{1.722,9}{600/5} = 6,02 \text{ A}.$$

Выбираем реле РТ-40/10 с уставкой 7А. Минимальный ток в реле, при двухфазном КЗ

$$I_{\text{pmin}} = \frac{\sqrt{3}}{2} \cdot \frac{10400}{600/5} = 75,05 \text{ A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{75,05}{7} = 10,7 \ge 1,5.$$

Защита обладает достаточной чувствительностью

Защита от перегрузок токами высших гармоник Ток срабатывания защиты

$$I_{c3} = 1.3 \cdot 289 = 375.7 \text{ A}.$$

Ток срабатывания реле

$$I_{\text{c.p}} = \frac{375.7}{600/5} = 3.13 \text{ A}.$$

Принимаем к установке реле РТ-40/6 с уставкой 3,6 A. Время срабатывания защиты

$$t_{\rm c.3} = 9 \, \rm c.$$

Защита от повышения напряжения

Напряжение срабатывания защиты

$$U_{c,3} = 1,1 \cdot 6,3 = 6,93$$
 кВ.

Напряжение срабатывания реле

$$U_{\rm cp} = \frac{6930}{6000/100} = 115,5 \text{ B}.$$

Выбираем реле РН-53/200 с уставкой срабатывания 116 В; $t_{\rm c,3} = 3-5$ мин.

11. ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ

11.1 Расчетная мощность электродвигателей

Расчётная мощность защищаемого электродвигателя выбирается в соответствии с расчетной нагрузкой отходящей линии НН с округлением полученной величины до стандартного значения мощности двигателей по справочным данным. Тип двигателя (синхронный или асинхронный) выбирается по желанию студента.

11.1.1 Защита электродвигателя от многофазных замыканий в обмотке статора.

Схема защиты должна быть наиболее простой, надёжной и экономичной. Защита выполняется реагирующей на значение тока, протекающего к месту повреждения со стороны питающей сети, и действует без выдержки времени на отключение двигателя от сети, а у синхронных двигателей еще и на гашение поля.

Для двигателей мощностью до 5000 кВт основной защитой от КЗ в обмотке статора является токовая отсечка, для двигателей более 5000 кВт – продольная дифференциальная защита. Дифференциальная защита предусматривается и на двигателях мощностью до 5000 кВт, если токовая отсечка не удовлетворяет требованиям чувствительности.

Чтобы исключить возможность ложного срабатывания ток срабатывания токовой отсечки должен быть надежно отстроен от максимального тока, который может протекать через защиту при неповрежденном двигателе — при пуске, самозапуске или внешнем КЗ. В качестве такого максимального тока обычно принимают пусковой ток. Наличие апериодической составляющей в первичном токе в режимах пуска, внешнего КЗ учитывается выбором соответствующего коэффициента отстройки.

Таким образом, ток срабатывания отсечки выбирается по условию:

$$I_{\rm c.3} = k_{\rm H} \cdot k_{\rm пуск} \cdot I_{\rm дв \, Hom}, \tag{11.1}$$

где $k_{\rm пуск}$ – кратность пускового тока; $k_{\rm H}=1,4$ -1,5 для АД; $k_{\rm H}=1,7$ -1,8 для СД.

При выполнении защиты с применением реле серии РТ-80 $k_{\rm H}=2$.

В дифференциальной защите выполняется пофазное сравнение значений токов со стороны питания двигателя и со стороны его нулевых выводов. Поэтому для выполнения дифференциальной защиты необходимо, чтобы каждая фаза обмотки статора имела по два вывода — начало и конец, причем концы обмоток фаз были бы выведены каждый на свой, а не один общий зажим в коробке выводов.

Ток срабатывания продольной дифференциальной защиты от-

страивается от тока небаланса при пусковом токе.

$$I_{\text{H\Bar{o} Make pacq}} = k_{\text{a}} \cdot k_{\text{одн}} \cdot \varepsilon(\%) \frac{I_{\text{пуск}}}{100n_{\text{T}}}, \tag{11.2}$$

где $k_a = 1,8-2,0$ для реле РТ-40; $k_{\text{олн}} = 0,5$; $\epsilon = 10\%$.

Кроме того, следует учесть ток небаланса за счёт подпитки точки КЗ синхронным двигателем:

$$I_{\kappa \, \text{дB}}^{(3)} = \frac{E_{\text{дB}}^{"} U_{\text{ном}}}{X_{\text{дB}^{*}}^{"} \frac{U_{\text{cp}}^{2}}{S_{\text{nom}}}} \,. \tag{11.3}$$

Чувствительность защит оценивается по минимальному току 2^x фазного КЗ на зажимах двигателя

$$k_{\rm q} = \frac{\sqrt{3}}{2} \frac{I_{K_3 \, \rm min}^{(3)}}{I_{\rm cp} n_{\rm T}}.$$
 (11.4)

11.1.2. Защита двигателя от замыканий на землю в обмотке статора

Защита должна действовать на отключение двигателя при токе замыкания на землю более 5 А. На СД защита должна действовать и на гашение поля.

Принять, что двигатель включен непосредственно к РУ подстанции, через кабельную линию.

Трансформаторы тока нулевой последовательности (ТТНП), к которым подключается защита, обычно с целью экономии располагаются в распределительном устройстве, Если это приводит к недопустимому загрублению защиты, ТТНП устанавливаются у линейных выводов двигателя, а для обеспечения сигнализации или (при необходимости, обусловленной требованиями техники безопасности) отключения замыкания на землю в линии, соединяющей двигатель с распределительным устройством, предусматривается установленный в ячейке выключателя основного питания ТТНП, к которому подключаются соответствующие устройства сигнализации или защиты.

Уставки реле тока защиты от замыкания на землю рассчитываются, как правило, в первичных токах.

Ток срабатывания ненаправленной токовой защиты, выполненной с использованием реле типа РТЗ-51, подключенного к кабельным транс-

форматорам тока нулевой последовательности (ТТНП) без подмагничивания, рассчитывается из условия несрабатывания защиты при внешнем однофазном замыкании на землю по выражению:

$$I_{\rm c,3} = k_{\rm H} \cdot k_{\rm G} \cdot I_{\rm C},\tag{11.5}$$

где $k_{\rm H}=1,2$ - 1,3; k_6 - коэффициент, учитывающий бросок собственного ёмкостного тока в момент зажигания дуги, для реле PT3-51, имеющего улучшенную отстройку от высших гармонических $k_6=2-2,5$. Для снятых с производства, но имеющихся в эксплуатации реле типа PT3-50 $k_6=3$ -4; $I_{\rm C}$ - собственный ёмкостный защищаемого присоединения. Значение $I_{\rm C}$ определяется как сумма ёмкостных токов двигателя ($I_{\rm CД}$) и линии ($I_{\rm CЛ}$) от места установки ТТНП до линейных выводов двигателя: $I_{\rm C}=I_{\rm CЛ}+I_{\rm CЛ}$.

Собственный ёмкостный ток двигателя ($I_{CД}$, в A) определяется по формуле:

$$I_{C,\Pi} = \frac{6\pi f C_{\pi} U_{\text{HOM}} \cdot 10^3}{\sqrt{3}},$$
 (11.6)

где $C_{\rm д}$ – ёмкость фазы статора электродвигателя, в Φ , принимается по справочным данным.

Для ориентировочных расчетов при отсутствии сведений заводаизготовителя можно пользоваться следующими приближенными формулами.

Для неявнополюсных СД и АД с короткозамкнутым ротором:

$$C_{\rm d} \approx \frac{0.0187 S_{_{\rm d \, hom}} \cdot 10^{-6}}{1.2 \sqrt{U_{_{\rm Hom}} (1 + 0.08 U_{_{\rm Hom}})}},$$
 (11.7)

где $S_{\rm д\ hom}$ – номинальная мощность двигателя, MB·A; $U_{\rm hom}$ – номинальное напряжение, кВ.

Для остальных двигателей:

$$C_{\text{Д}} \approx \frac{40 \sqrt[4]{S_{\text{HoM}}^3} \cdot 10^{-6}}{3(U_{\text{HoM}} + 3600) \sqrt[3]{n_{\text{HoM}}}},$$
 (11.7a)

где $U_{\rm HOM}$ — номинальное напряжение двигателя, В; $n_{\rm HOM}$ — номинальная частота вращения ротора, об/мин.

Собственный ёмкостный ток линии, входящей в зону защиты, можно определить по приближенному выражению (8.16) или же по спра-

вочным данным ёмкостных токов единицы длины линий по выражению [8]:

$$I_{C_{\Pi}} = I_{C_0} lm$$

где I_{C0} — собственный ёмкостный ток единицы длины линии, А/км; l — длина линии, км; m — число проводов (кабелей) в фазе линии. Значения ёмкостных токов для кабельных и воздушных линий приведены в табл. Π 4, Π 5.

Чувствительность защиты определяется по формуле

$$k_{\rm q} = \frac{I_{C\Sigma} - I_{C\Pi}}{I_{C3}}.$$
 (11.8)

Если реле защиты подключается к ТТНП в распределительном устройстве и в зону защиты таким образом входит линия, соединяющая двигатель с распределительным устройством, необходимо, чтобы

$$k_{\rm q} = \frac{I_{C\Sigma} - I_{C\Pi}}{I_{CR}} \ge k_{\rm q.min},$$
 (11.8a)

где $k_{\rm ч.min}$ – минимальный, нормируемый для защиты линии от однофазных замыканий на землю коэффициент чувствительности; $I_{\rm c.3}$ – ток срабатывания защиты, A; $I_{\rm C\Sigma}$ - наименьшее значение суммарного ёмкостного тока; $I_{\rm C}$ – собственный ёмкостный ток защищаемого присоединения «линия плюс двигатель», A.

Вычисленное по (11.5) значение тока срабатывания защиты может оказаться меньше минимального тока срабатывания защиты $I_{\rm c.3~min}$ [6], зависящего от типов, количества и схемы подключения ТТНП (табл. Пб.). В этом случае ток срабатывания принимается по условию

$$I_{\rm c.3} = I_{\rm c.3.min}$$

Следует иметь в виду, что ток срабатывания защиты должен быть не только с определенным запасом ($k_{\text{зап}} = 1, 2-1, 3$) меньше опасного для двигателя тока 5 A, но и обеспечивать чувствительность защиты линии. Учитывая рекомендуемые значения коэффициентов можно подсчитать, что эти условия в сети без компенсации ёмкостных токов будут выполняться при условии:

$$4 \text{ A} \ge I_{c.3} \ge 3 I_C; \qquad I_{C\Sigma} \ge (4 \div 5) I_C.$$

Если это не будет выполняться из-за большого ёмкостного тока линии, то ТТНП следует перенести к линейным выводам двигателя, а расчет повторить, принимая $I_C = I_{C,I}$.

11.1.3. Защита электродвигателя от перегрузки.

Согласно ПУЭ защита от перегрузки должна предусматриваться для двигателей, подверженных перегрузке по технологическим причинам, и для двигателей с особо тяжелыми условиями пуска и самозапуска (длительность прямого пуска непосредственно от сети 20 с и более), перегрузка которых возможна при чрезмерном увеличении длительности пуска вследствие понижения напряжения в сети.

Защита от токов перегрузки, обусловленной технологическими причинами, действует на сигнал, который передается на пост управления двигателем, если дежурный персонал может разгрузить двигатель, не останавливая его.

Допускаемое ПУЭ действие защиты на отключение выполняется на СД, если защита от перегрузки совмещена с защитой от асинхронного режима, а также на АД в тех случаях, когда:

- отключение двигателя не приводит к нарушению технологического процесса;
 - разгрузку невозможно осуществить без останова;
 - отсутствует постоянный дежурный персона;
 - имеют место тяжелые условия пуска и самозапуска.

Защита электродвигателя от перегрузки выполняется на принципе МТЗ и отстраивается от номинального тока двигателя

$$I_{\text{c.3.}} = \frac{k_{\text{H}} \cdot I_{\text{HOM},\text{I}}}{k_{\text{B}}}; \qquad (11.9)$$

$$I_{\text{c.p.}} = \frac{k_{\text{cx}} \cdot I_{\text{c.3}}}{n_{\text{TT}}};$$
 (11.10)

где $k_{\rm H}$ — коэффициент надежности отстройки, учитывающий ошибки реле и необходимый запас; принимается равным 1,05 при действии защиты на сигнал и 1,1-1,2 при действии на отключение; $k_{\rm B}$ — коэффициент возврата реле, принимается равным 0,8 для реле серии РТ-80 и 0,85 для реле серии РТ-40.

Время срабатывания защиты отстраивается от времени пуска двигателя

$$t_{\rm c.3.} > t_{\rm пуск.}$$

11.1.4. Защита двигателя минимального напряжения

Чтобы оценить необходимость подключения двигателя к защите минимального напряжения следует оценить возможность его самозапуска.

Пусковое сопротивление двигателя

$$X_{\text{п.д}} = \frac{U_{\text{ном}}}{\sqrt{3} \cdot I_{\text{п.л}}}.$$
 (11.11)

Определяется сопротивление обобщенной нагрузки

$$S_{\text{harp}} = S_{\text{нагр секц}} - S_{\text{номдв}}, \tag{11.12}$$

где $S_{\text{нагр секц}}$ – суммарная нагрузка секции шин, к которой подключен двигатель.

Сопротивление обобщённой нагрузки, приведенной к стороне ВН, трансформатора:

$$x_{\text{harp}} = \frac{0.35 \cdot U_{\text{cp.HH}}^2}{S_{\text{harp}}}.$$
 (11.13)

Эквивалентное пусковое сопротивление

$$X_{\text{\tiny ЭКВ}} = \frac{X_{\text{\tiny П.Д}} \cdot X_{\text{\tiny НАГР}}}{X_{\text{\tiny П.Д}} + X_{\text{\tiny НАГР}}}.$$
(11.14)

Ток самозапуска

$$I_{\text{C3}\Pi} = \frac{U_{\text{cp HH}}}{\sqrt{3}(X_{\text{c peg max } K_2} + X_{\text{3KB}})}.$$
 (11.15)

Коэффициент самозапуска

$$k_{\rm csil} = \frac{I_{\rm csil}}{0.7 \cdot I_{\rm Hom.tp.}}.$$
 (11.16)

Остаточное напряжение на зажимах двигателя

$$U_{\text{oct}} = \sqrt{3}I_{\text{csn}}X_{\text{skB}}.$$
 (11.17)

Самозапуск двигателя обеспечивается, если $U_{
m oct}$ не ниже 55-70% $U_{
m HOM}$.

Если это условие не выполняется, следует разработать схему защиты минимального напряжения

$$U_{c.3} = \frac{0.7 \cdot U_{\text{HOM},ZB}}{k_{\text{H}} \cdot k_{\text{B}}};$$

$$t_{c.3} = 0.5 \text{ c.}$$
(11.18)

11.2. Пример расчёта релейной защиты электродвигателя

Расчёт защиты выполняется для синхронного двигателя СТД-5000-2 мощностью 5000 кВт . $U_{\rm HOM}=6$ кВ, $S_{\rm HOM}=5740$ кВА, $I_{\rm II}/I_{\rm HOM}=7,72$. Двигатель связан с КРУ линией, состоящей из трёх кабелей сечением 150 мм² каждый. Длина линии 35 м. Реле защиты от замыканий на землю серии РТЗ-51 подключено к трём соединенным параллельно ТТНП типа ТЗЛМ.

Номинальный ток двигателя

$$I_{\text{двном}} = \frac{5740}{\sqrt{3} \cdot 6} = 553 \text{ A}.$$

11.2.1. Продольная дифференциальная защита

Ток небаланса при пусковом токе двигателя

$$I_{\text{H6 Make pact}} = 2.0 \cdot 0.5 \cdot 10 \frac{7.72 \cdot 553}{100} = 426.9 \text{ A}.$$

Ток срабатывания защиты

$$I_{c.3} = 1,2.426,9 = 512,3 \text{ A}.$$

Ток небаланса за счёт подпитки места КЗ синхронным двигателем

$$I_{\kappa, \text{дB}}^{(3)} = \frac{1,1 \cdot 6,0}{0,2 \frac{6,3^2}{5,74}} = 4,77 \text{ KA}.$$

$$I_{\text{H6 Make pacy}} = 2.0 \cdot 0.5 \cdot 10 \frac{4770}{100} = 477 \text{ A}.$$

Определяющим является второе условие. Ток срабатывания защиты

$$I_{c3} = 1,2 \cdot 477 = 572,4 \text{ A}.$$

Ток срабатывания реле

$$I_{\rm cp} = \frac{1.572,4}{600/5} = 4,77 \text{ A}.$$

Принимаем реле РТ-40/10 с уставкой 5 А. Минимальный ток в реле при двухфазном КЗ

$$I_{\text{pmin}} = \frac{\sqrt{3}}{2} \cdot \frac{10400}{600/5} = 75 \text{ A}.$$

Коэффициент чувствительности

$$k_{\rm q} = \frac{75}{5} = 5.$$

Защита обладает достаточной чувствительностью.

11.2.2. Защита двигателя от замыканий на землю в обмотке статора

Ёмкость фазы статора электродвигателя

$$C_{\pi} = \frac{0.0187 \cdot 5.74 \cdot 10^{-6}}{1.2\sqrt{6.0(1+0.08 \cdot 6.0)}} = 3.01 \cdot 10^{-8} \Phi.$$

Ёмкостный ток двигателя

$$I_{CA} = \frac{6 \cdot \pi \cdot 50 \cdot 3,01 \cdot 10^{-8} \cdot 6 \cdot 10^{3}}{\sqrt{3}} = 0,098 \,\text{A}.$$

Собственный ёмкостный ток линии

$$I_{C_n} = I_{C_0} \cdot l \cdot m = 1,19 \cdot 0,035 \cdot 3 = 0,125 \text{ A}.$$

Суммарный ёмкостный ток защищаемого присоединения

$$I_C = I_{C_{II}} + I_{C_{II}} = 0.098 + 0.125 = 0.223 A$$
.

Первичный ток срабатывания защиты

$$I_{c_3} = 1,25 \cdot 2,5 \cdot 0,223 = 0,697 \text{ A}.$$

Так как полученное значение $I_{\rm c.3} = 0{,}697~{\rm A}$ оказывается меньшим $I_{\rm c3.min} = 1{,}08$, приведенного в табл. П6 для трёх соединенных параллельно ТТНП типа ТЗЛМ, защиту приходится загрубить, приняв

$$I_{c3} = I_{c3. min} = 1,08 A.$$

Выбираем реле РТ3-51 с уставкой по первичному току 1,08 А. Коэффициент чувствительности

$$k_{\rm q} = \frac{6.8 - 0.223}{1.08} = 6.09.$$

Защита обладает достаточной чувствительностью.

Принятое значение тока срабатывания защиты удовлетворяет условиям чувствительности к однофазным замыканиям на землю и в линии к двигателю и в обмотке статора:

$$I_{c.3} \le \frac{I_{C\Sigma} - I_{C}}{k_{\text{u,min}}} = \frac{6.8 - 0.223}{1.25} = 5.26 \text{ A}.$$

$$I_{c.3} \le 4 \text{ A}.$$

11.2.3. Защита двигателя от перегрузки (МТЗ)

Ток срабатывания защиты

$$I_{\text{c.3}} = \frac{1,2.553}{0.85} = 781 \text{ A}.$$

Ток срабатывания реле

$$I_{\text{c.p}} = \frac{1.781}{600/5} = 6.5 \text{ A}.$$

Принимаем реле РТ-40/10 с уставкой 7 А.

Время срабатывания защиты отстраивается от времени пуска.

$$t_{c3} = 10 \text{ c.}$$

11.2.4. Расчет защиты от асинхронного режима

На данном двигателе защита от асинхронного режима совмещена с защитой от перегрузки.

Время возврата промежуточного реле, обеспечивающего устойчивое действие защиты при колебаниях тока статора в асинхронном режиме, принимается наибольшим возможным для данного типа реле (РП-252):

$$t_{p} = 1.1 \div 1.4 \text{ c}.$$

11.2.5. Защита двигателя минимального напряжения

Пусковое сопротивление двигателя

$$X_{\text{п.д}} = \frac{6300}{\sqrt{3} \cdot 7.72 \cdot 553} = 0.853 \text{ Om.}$$

Мощность обобщенной нагрузки секции

$$S_{\text{Happ}} = 25 \cdot 0.7 \cdot 0.5 - 5.74 = 3.01 \text{ MBA}$$

Сопротивление обобщенной нагрузки

$$X_{\text{harp}} = \frac{0.35 \cdot 6.3^2}{3.01} = 4.62 \text{ Om.}$$

Эквивалентное пусковое сопротивление

$$X_{\text{\tiny 9KB}} = \frac{0.853 \cdot 4.62}{0.853 + 4.62} = 0.72 \text{ Om.}$$

Ток самозапуска

$$I_{\text{\tiny CSII}} = \frac{6.3}{\sqrt{3} \cdot (0.28 + 0.72)} = 3642 \text{ A}.$$

Коэффициент самозапуска

$$k_{\text{\tiny CSII}} = \frac{3642}{0.7 \cdot 1147} = 4,54.$$

Остаточное напряжение на зажимах двигателя

$$U_{\text{oct}} = \sqrt{3} \cdot 3642 \cdot 0,72 = 4536 \text{ B};$$

$$U_{\text{oct}}(\%) = \frac{4536 \cdot 100}{6300} = 72 \%.$$

Синхронный двигатель может быть включен в работу путем ресинхронизации. Если по условиям технологии, пуск двигателя невозможен, на него следует установить защиту минимального напряжения:

Напряжение срабатывания

$$U_{\text{c.3}} = \frac{0.7 \cdot 6000}{1.2 \cdot 1.2} = 2500 \text{ B}.$$

Напряжение срабатывания реле

$$U_{\rm cp} = \frac{2500}{6000/100} = 41.7 \text{ B}.$$

Принимаем реле PH-54/48 с уставкой 41,7 В. Время срабатывания защиты

$$t_{\rm c.s.} = 9 \, \rm c.$$

12. АВТОМАТИКА ПОНИЗИТЕЛЬНОЙ ПОДСТАНЦИИ

В разделе «Автоматика» необходимо сделать выбор устройств автоматики [5,7], в соответствии с требованиями ПУЭ выполнить расчёт уставок и согласование устройств автоматики между собой и релейной защиты присоединений. Схемные решения устройств автоматики должны быть даны в общих схемах управления, сигнализации, защиты и автоматики.

12.1. Автоматическое повторное включение (АПВ)

Устройство АПВ предусматривают на выключателях всех воздушных и кабельно-воздушных линий электропередач, сборных шинах подстанций, если эти шины не являются элементами КРУ, понижающих трансформаторов однотрансформаторных подстанций.

На главных понизительных подстанциях, трансформаторах подстанции устанавливаются устройства АПВ при наличии дифференциальной защиты сборных шин напряжением 35, 110 и 220 кВ. Пуск АПВ осуществляется от дифференциальной защиты шин при успешном действии АПВ на питающей линии. АПВ должно контролировать наличие напряжения на шинах (АПВНН).

При отсутствии сборных шин АПВ устанавливается на выключателях вводных фидеров, трансформаторов и перемычек мостовых схем транзитных и узловых подстанций. Решение о контроле отсутствия или наличия напряжения (АПВОН, АПВНН), контроле синхронизации (АПВОС) должно приниматься на основе анализа схемы сети и режимов её работы. Во всех случаях следует применять однократное трёхфазное электрическое АПВ.

На отходящих кабельных линиях напряжением 6-10 кВ должно устанавливаться частотное АПВ (ЧАПВ), если принято решение об установке устройства АЧР на подстанции. Пуск устройства ЧАПВ производится при восстановлении частоты до заданной уставки срабатывания.

На электродвигателях АПВ должно устанавливаться в том случае, если двигатели отключились от защиты минимального напряжения, а их самозапуск невозможен по условиям остаточного напряжения.

Выдержка времени АПВ выбирается из следующих условий:

1)
$$t_{\text{AIIB}} \ge t_{\text{г.п}} + t_{\text{зап}},$$
 (12.1)

где $t_{\Gamma,\Pi}$ – время готовности привода в зависимости от типа привода $t_{\Gamma,\Pi}$ =0,1-0,2 с.

2)
$$t_{\text{AIIB}} \ge t_{\text{\tiny \Gamma.B}} - t_{\text{\tiny B.B}} + t_{\text{\tiny 3aII}},$$
 (12.2)

где $t_{\scriptscriptstyle \Gamma,B}$ – время готовности выключателя. Для маломасляных выключате-

лей $t_{\text{г.в}} = 0,2-0,5$ с, для баковых $t_{\text{г.в}} = 1-2$ с; $t_{\text{в.в}}$ – время включения выключателя.

3)
$$t_{\text{AIIB}} \ge t_{\pi} + t_{\text{sair}},$$
 (12.3)

где $t_{\rm д}$ — время деионизации среды, для сетей до 35 кВ $t_{\rm д}$ =0,1 с, 110 кВ $t_{\rm д}$ =0,17 с, 220 кВ $t_{\rm д}$ =0,32 с.

4)
$$t_{\text{AIIB}} \ge t_{\text{c.3 min } U} + t_{\text{3aII}},$$
 (12.4)

где $t_{\rm c.3.min}_U$ – время срабатывания минимального напряжения на электродвигателях не предназначенных для самозапуска. $t_{\rm c.3.min}_U$ = 6-9 с.

Время запаса для всех случаев следует принять равным 0,5 с.

12.2. Автоматическое включение резерва (АВР)

Устройства ABP устанавливаются на подстанциях, для которых предусматриваются два или более источников питания, работающих раздельно в нормальном режиме. При использовании схем с неявным резервом устройства ABP устанавливаются на секционных выключателях. В схемах, использующих явный резерв питающих линий, трансформаторов, электродвигателей, ABP устанавливаются на резервном оборудовании.

При выполнении пусковых органов ABP на реле напряжения рекомендуется принимать напряжение срабатывания минимальных реле напряжения.

$$U_{c,p_1} = (0.25 \div 0.4)U_{\text{hom}}.$$
 (12.5)

Напряжение срабатывания максимального реле напряжения, контролирующего наличие напряжения на резервном источнике, определяется из условия отстройки от минимального рабочего напряжения:

$$U_{\text{c.p.}_2} = \frac{U_{\text{pa6 min}}}{k_{\text{H}} \cdot k_{\text{B}} \cdot n_{\text{H}}}, \qquad (12.6)$$

где $U_{\text{раб min}} = 0.95$; $k_{\text{H}} = 1.1-1.2$; $k_{\text{B}} = 1.2-1.25$.

Частота срабатывания частотного пускового органа ABP (при наличии мощных синхронных двигателей) принимается в пределах 46-48 Гп.

Время действия АВР выбирается исходя из следующих условий:

1) По условию отстройки от времени срабатывания технологических защит, в зоне действия которых КЗ могут вызвать снижение напряжения срабатывания (ф.12.5).

$$t_{\text{c.p ABP}} \ge t_{\text{макс отх линий}} + \Delta t.$$
 (12.7)

2) По условию согласования действия ABP с защитой минимального напряжения электродвигателей и других устройств автоматики узла (ABP, AПВ).

$$\begin{aligned} t_{\text{c.p ABP}} &\geq t_{\text{c.3 min } U} + t_{\text{3aII}} \\ t_{\text{c.p ABP}} &\geq t_{\text{A}\Pi\text{B}} + t_{\text{3aII}} \\ t_{\text{c.p A}\Pi\text{B}_2} &\geq t_{\text{ABP1}} + t_{\text{3aII}} \end{aligned} \right\},$$
 (12.8)

где $t_{\text{с.з.min}U}$ – время срабатывания защиты минимального напряжения на крупных двигателях, не предназначенных для самозапуска, принимается равным 6-9 с; $t_{\text{АПВ}}$ – время действия АПВ на питающей линии рабочего источника питания; $t_{\text{АВР2}}$ – время действия АВР на более высоком уровне (ближе к источнику питания); $t_{\text{Зап}} = 0.5$ с.

12.3. Автоматическая частотная разгрузка (АЧР)

Устройства АЧР предусматривают на подстанциях промышленных предприятий для отключения части электроприёмников при возникновении в питающей энергосистеме дефицита активной мощности, сопровождающегося снижением частоты до аварийно низкого уровня.

К устройствам АЧР на напряжении 6-10 кВ подключаются электроприёмники III и II категории по надёжности электроснабжения, отключение которых не ведёт к невосполнимому недоотпуску продукции.

Схемы на подстанции целесообразно разрабатывать с учётом блокирования устройств АПВ и АЧР при отключении потребителей от АЧР. Для включения отключившихся от АЧР потребителей следует предусматривать устройства ЧАПВ.

12.4. Автоматическое регулирование напряжения трансформатора (АРНТ)

Устройства АРНТ на подстанциях промышленных предприятий устанавливаются в том случае, если электроприёмники предприятия имеют суточные графики нагрузки с большими отклонениями активной и реактивной мощности в часы больших и малых нагрузок сети, это приводит к недопустимым по ГОСТ Р54149–2010 отклонениям напряжения на шинах 6-10 кВ понизительных подстанций потребителей (±10%).

Для решения вопроса о применении APHT следует найти диапазон изменения напряжения в режимах максимальных и минимальных нагрузок энергосистемы и больших и малых нагрузок промышленных сетей:

- для минимального режима

$$U_{2_{\min}} = U_{\text{cp BH}} (1 + \Delta U_{\text{PIIH*}}) - \frac{P_{\min} \cdot r_{\text{rp}} + Q_{\min} \cdot X_{\text{rp min}}}{U_{2} (1 + \Delta U_{\text{PIIH*}})};$$
(12.9)

- для максимального режима

$$U_{2_{\text{max}}} = U_{2\text{cc BH}} (1 - \Delta U_{\text{P\PiH*}}) - \frac{P_{\text{max}} \cdot r_{\text{Tp}} + Q_{\text{max}} \cdot X_{\text{Tp max}}}{U_{2} (1 - \Delta U_{\text{P\PiH*}})}.$$
 (12.10)

Если

$$\frac{U_{2_{\min}} - U_{2_{\max}}}{U_{\text{cd HH}}} > 20\%, \tag{12.10}$$

следует устанавливать АРНТ.

В качестве примера рассмотрим суточный график нагрузки, приведенный в методических указаниях по курсу «Электрические станции и подстанции».

$$P_{\text{max}} = \frac{28,6}{2} = 14,3 \text{ MBT}, \quad P_{\text{min}} = \frac{15,7}{2} = 7,85 \text{ MBT}.$$

$$Q_{\text{max}} = \frac{16,2}{2} = 8,1 \text{ MBap}, \quad Q_{\text{min}} = \frac{7,5}{2} = 3,75 \text{ MBap}.$$

Индуктивные сопротивления трансформатора (7.4):

$$X_{\text{rp max}} = 74,6 \text{ OM};$$

 $X_{\text{rn min}} = 128 \text{ OM}.$

Активные сопротивления с учётом регулирования РПН:

$$R_{\text{rp max}} = \frac{P_{\kappa} \cdot U_{\text{cp BH}}^2 (1 - \Delta U_{\text{PIIH}*})^2 \cdot 10^3}{S_{\text{Hom}}^2};$$
(12.11)

$$R_{\text{rp min}} = \frac{P_{\kappa} \cdot U_{\text{cp BH}}^2 (1 + \Delta U_{\text{PIIH}*})^2 \cdot 10^3}{S_{\text{HOM}}^2};$$
 (12.12)

$$R_{\text{rp max}} = \frac{120 \cdot 115^2 (1 - 0.16)^2 \cdot 10^3}{25^2} = 1,79 \text{ Om};$$

$$R_{\text{rp min}} = \frac{120 \cdot 126^2 \cdot 10^3}{25^2} = 3,05 \text{ Om.}$$

Активные и реактивные сопротивления трансформатора на среднем положении РПН:

$$X_{\text{тр cp}} = \frac{10,5 \cdot 115^2}{100 \cdot 25} = 55,5 \text{ Ом;}$$
 $R_{\text{тр cp}} = \frac{120 \cdot 115^2 \cdot 10^3}{25^3} = 2,54 \text{ Ом.}$

Напряжение на шинах НН без регулирования в минимальном режиме

$$\Delta U_{\min \mathrm{BH}} = \frac{7,85 \cdot 2,54 + 3,75 \cdot 55,5}{115} = 1,98 \ \mathrm{kB};$$

$$U_{\min \mathrm{HH}} = (126 - 1,98) \frac{6,3}{115} = 6,8 \ \mathrm{kB};$$

$$\Delta U_{\max \mathrm{BH}} = \frac{14,3 \cdot 2,54 + 8,1 \cdot 55,5}{115} = 4,22 \ \mathrm{kB};$$

$$U_{\max \mathrm{BH}} = \left[115(1 - 0,16) - 4,22\right] \frac{6,3}{115} = 5,06 \ \mathrm{kB}.$$

Диапазон изменений напряжений

$$\delta U_{\rm HH} = \frac{6.8 - 5.06}{6.3} \cdot 100 = 27.61\% > 20\%.$$

Целесообразна установка АРНТ

Определим диапазон изменения напряжения на шинах 6 кВ при автоматическом регулировании напряжения:

$$\Delta U_{\min \mathrm{BH}} = \frac{7,85 \cdot 3,05 + 3,75 \cdot 128}{126} = 4 \mathrm{~kB};$$

$$U_{\min \mathrm{HH}} = (126 - 4) \frac{6,3}{115} = 6,68 \mathrm{~kB};$$

$$\Delta U_{\max \mathrm{BH}} = \frac{14,3 \cdot 1,79 + 8,1 \cdot 74,6}{115(1 - 0,16)} = 6,52 \mathrm{~kB};$$

$$U_{\max \mathrm{BH}} = \left[115(1 - 0,16) - 6,52\right] \frac{6,3}{115(1 - 0,16)} = 5,87 \mathrm{~kB}.$$

Диапазон изменений напряжений

$$\delta U_{\rm HH} = \frac{6,68-5,87}{6.3} \cdot 100 = 12,86\%.$$

Определим положение переключателя РПН, его следует установить в положении (уставка APHT):

$$U_{\text{cp HH}} = \frac{6,68 + 5,87}{2} = 6,275 \text{ kB};$$

$$\Delta U_{\text{HH}} = \frac{6,3 - 6,275}{6,3} \cdot 100 = 0,4\%;$$

$$n_{\text{PIIH*}} = \frac{0,4}{1,78} = 0,22.$$

Принимаем номинальное положение РПН. Тогла

$$U_{\text{max HH}} = 5.87 + 0 \cdot \frac{1.78}{100} \cdot 6.3 = 5.87 \text{ kB};$$

 $U_{\text{min HH}} = 6.38 + 0 \cdot \frac{1.78}{100} \cdot 6.3 = 6.38 \text{ kB}.$

Напряжение на шинах 6 кВ будет поддерживаться в допустимых пределах.

Чувствительность АРНТ должна быть не выше одной ступени регулирования, т.е.

$$\Delta U_{\rm APHT} > 1,78\% U_{\rm cp\,BH}$$

Принимаем

$$\Delta U_{\text{APHT}} = 2\% U_{\text{cp BH}} = \frac{2 \cdot 115}{100} = 2.3 \text{ kB}.$$

Время срабатывания АРНТ выбирается из условия его несрабатывания при случайном кратковременном изменении напряжения

$$t_{\text{APHT}} \approx 2 \div 4$$
 мин.

12.5. Устройства для автоматического включения конденсаторной установки

Автоматическое управление конденсаторными установками на подстанции промышленного предприятия может быть использовано для

автоматического, ступенчатого регулирования напряжения или регулирования режима компенсации реактивной мощности.

В соответствии с этим могут быть использованы следующие законы регулирования:

- 1) постоянство напряжения на шинах HH $U_{\rm HH}$ =const;
- 2) постоянство входной реактивной мощности $Q_{\rm BX}$ =const;
- 3) постоянство коэффициента реактивной мощности tg ϕ =const;
- 4) временное управление конденсаторной установкой.

Эти законы регулирования реализуются в схемах управления выключателем конденсаторной установки.

Время срабатывания устройства должно отстраиваться от отклонений режима $t_{\rm AV5K}$ =2-4 мин.

ПРИЛОЖЕНИЕ

Справочное

Таблица П1 Диапазон и число ступеней регулирования РПН трансформаторов и автотрансформаторов

Класс на- пряжения, кВ	Мощность, МВА	Диапазон и число сту- пеней регулирования	Обмотка с от- ветвлениями		
	Двухобмо	точные трансформаторы			
6-35	1-80	±4x2,5%; ±6x1,5(до 01.01.88)	ВН		
110	2,5	+10x1,5-8x1,5%	НН		
110	6,3-125	±9x1,77%	ВН(в нейтрали)		
220	32-200	±12x1%	ВН(в нейтрали)		
	Трехобмо	точные трансформаторы			
110	6,3-80	±9x1,77%	ВН(в нейтрали)		
220	25-63	±12x1%	ВН(в нейтрали)		
	Авт	готрансформаторы			
220	63-250	±8x1,5%(63 MBA) ±6x2%(125,220,250 MBA)	СН(в линии)		
	Трансформат	горы для собственных нуж	Д		
6-35	1-63	±8x1,5%; ±8x1,25%	ВН		

Таблица П2 Сопротивление $1/3~Z^{(1)}_{\ \ \ T}$ трансформаторов с низшим напряжением 400-230 В

Мощность трансформатора,	Высшее	$1/3~Z^{(1)}_{_{\mathrm{T}}}$, приведенное
кВА	напряжение, кВ	к напряжению 400 В, Ом
	Схема соедине	ний Y/Y_0
25	6 и 10	1,04
40	6 и 10	0,65
63	6 и 10	0,41
100	6 – 35	0,26
160	6 – 35	0,16
250	6 – 35	0,1
400	6 – 35	0,065
630	6 – 35	0,042
1000	6 и 10	0,027
1000	35	0,0255
1600	6 и 10	0,018
1000	35	0,017
	Схема соедине	
160	6 и 10	0,0454
250	6 и 10	0,029
400	6 и 10	0,019
630	6 и 10	0,014
1000	6 и 10	0,009
1600	6 и 10	0,006
2500	6 и 10	0,0035
	Схема соедине:	ний Y/Z ₀
25	6 и 10	0,3
40	6 и 10	0,19
63	6 и 10	0,12
100	6 и 10	0,075
160	6 и 10	0,05
250	6 и 10	0,03

Таблица П3 Технические данные максимальных токовых реле PT-40

	ти теские д				ие катуп	-					
	4	Паата			1						
	K, 1	Послед				Параллельное					
	180	I, A		иче-	I, A	-	миче-	емая ВА			
D	/CT3/	НИЗ		стой- ъ, А	НИЗ	ская	ляе Ъ,]				
Реле	ЭΗУ	ıBa			ıBa		ть, А)e6.			
	Диапазон уставок, А	Гок срабатывания,	Длительно	течение 1 с	Гок срабатывания,	Длительно	течение 1 с	Потребляемая мощность, ВА			
	иаг	рас	гел	че _і 1 с	рас	гел	че 1 с	П			
	Д	K C	лп)	Вте	жс	(ли)	Вте				
		Тс	П	Н	Тс	口	ш				
PT-40/0,2	0,05-0,2	0,05-0,1	0,55	15	0,1-0,2	1,1	30	0,2			
PT-40/0,6	0,15-0,6	0,15-0,3	1,75	50	0,3-0,6	3,5	100	0,2			
PT-40/2	0,5-2	0,5-1	4,15	100	1-2	8,3	200	0,2			
PT-40/6	1,5-6	1,5-3	11	300	3-6	22	600	0,5			
PT-40/10	2,5-10	2,5-5	17	400	5-10	34	800	0,5			
PT-40/20	5-20	5-10	19	400	10-20	38	800	0,5			
PT-40/50	12,5-50	12,5-25	27	500	25-50	54	1000	0,8			
PT-40/100	25-100	25-50	27	500	50-100	54	1000	1,8			
PT-40/200	50-200	50-100	27	500	100-200	54	1000	8			

^{* -} указывается потребляемая мощность при минимальной уставке принятой схемы соединения.

Таблица П4 Средние значения ёмкостного тока металлического однофазного замыкания на землю для кабельных линий при частоте 50 Гц

Carranna	Ток, А	/км при номи	нальном напря:	жении сети, кВ			
Сечение		6	10	35			
жилы кабеля, мм ²	пр	и номинально	м напряжении	кабеля, кВ			
каосли, мм	6	10	10	35			
16	0,31	0,26	0,43	-			
25	0,43	0,34	0,56	=			
35	0,49	0,38	0,63	=			
50	0,58	0,44	0,73				
70	0,43	0,52	0,87				
95	0,89	0,61	1,02	3,62/3,81			
120	1	0,70	1,16	3,81/4,57			
150	1,19	0,78	1,3	4,19/4,95			
185	1,28	0,91	1,51	4,38/5,34			
240	1,33	1,01	1,8	4,76/5,91			

Примечание. Для номинального напряжения 35 кВ в числителе указаны значения токов для одножильного кабеля с изоляцией из вулканизированного полиэтилена, в знаменателе — для одножильного кабеля с металлической оболочкой и бумажной пропитанной изоляцией.

Таблица П5 Средние значения ёмкостного тока металлического однофазного замыкания на землю одной фазы ВЛ при частоте 50 Гц

Характеристика		Ток, А/км, при номинальном напряжении, сети кВ										
линии	6	10	35									
Одноцепная												
линия:												
без троса	0,013	0,256										
с тросом	-	0,032	0,12									
Двухцепная												
линия:												
без троса	0,017	0,035	0,14									
с тросом	-	-	0,15									

Таблица П.6 Токи срабатывания реле РТЗ-51, подключенного к трансформаторам тока нулевой последовательности

		Количество ТТНП и их соединение													
Тип ТТНП		2	4	4	2	3	4	5							
111111	1	посл	едовате	льно	параллельно										
ТЗЛ	<u>0,68</u> 3,96	1,25 6,80	1,95 9,83	2,48 14,6	<u>0,97</u> 4,25	1,19 4,80	1,43 5,95	Нет данных							
ТЗЛМ	<u>0,60</u> 3,26	1,08 6,35	1,60 9,60	2,16 13,00	<u>0,89</u> 4,62	1,08 5,10	1,33 5,66	1,67 6,60							
ТЗР	<u>0,90</u> 3,80	1,26 6,20	Нет да	анных	1,41 6,10	Н	ет данни	ых							
ТЗРЛ	<u>0,81</u> 4,17	1,34 7,90	<u>1,95</u> 11,70	2,56 15,44	1,00 5,00	1,20 6,10	1,52 7,20	Нет данных							

Примечания:

- 1. Токи срабатывания даны при номинальной частоте $f=50~\Gamma$ ц.
- 2. В числителе приведены минимальные, а в знаменателе максимальные токи срабатывания.

Таблица П.7 Некоторые технические данные трансформаторов тока с элегазовым заполнением TG-145 и TG-245

Параметр		Значе	ние		
Параметр	TG-14	45		TG-245	
1. Тип заполнения	SF	F ₆ или S	F_6 +	N_2	
2. Номинальное напряжение	110 к	В		220 кВ	
3. Номинальный первичный ток, А		500,600, , 1500, 2		800, 1000, , 3000	
4. Номинальный вторичный ток, А		5 или	ı 1		
5. Ток термической стойкости, 1- секундный, кА	31,5 (4	0*)		50	
6. Ток электродинамической стойкости, кА	80(100)*)		125	
7. Номинальная предельная кратность обмоток для защиты		20			
8. Номинальная вторичная нагрузка обмоток для защиты при соs ϕ =0,8 / класс точности вторичных обмоток	20 BA/ 30 BA/ 40 BA/	10P	20 BA/5P 20 BA/10P 20 BA/10P		
9. Сопротивления постоянному току	20BA/5 P	30BA/ P	/10	40BA/10 P	
вторичных обмоток для защиты (5A) при 75^{0} C, Ом: 300-600-1200 A 400-800 A 500-1000-2000 A 750-1500-3000 A	0,21 0,28 0,30 0,36	0,23 0,30 0,34 0,40) -	0,26 0,31 0,35 0,43	
10. Схема трансформатора	3И1 3И2 для защиты	I	4 И для	Л2 I1 4И2 я защиты	

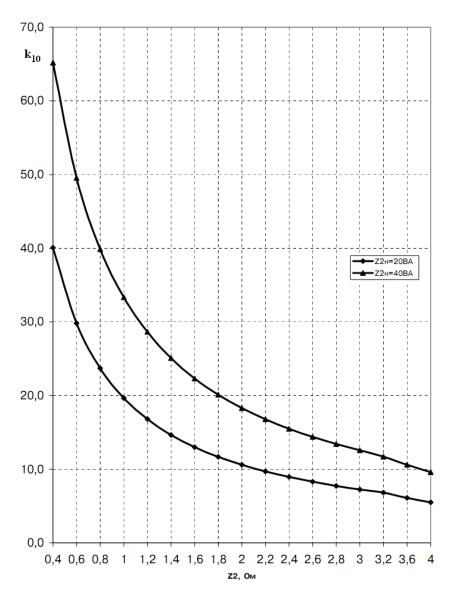


Рис.П.1. Кривые предельной кратности трансформатора тока TG-245

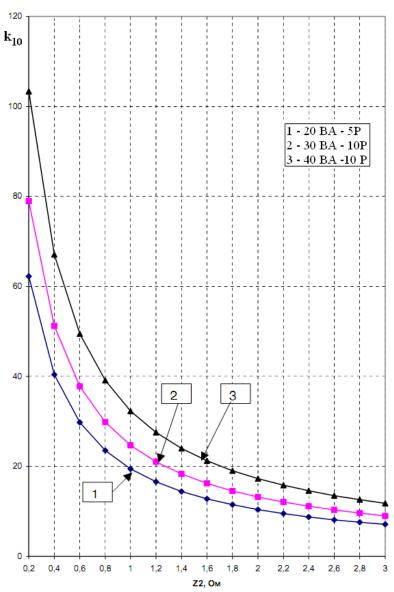


Рис. П.2. Кривые предельной кратности трансформатора тока TG-145

Таблица П.8

Расчетные значения номинальной предельной кратности встроенных транс форматоров тока ТВ-35

100		I	ı	ı	I	ı	ı	ı	ı	1	ı	ı	9	I	9	7	6
75		-	ı	_	_	-	_	-	_	_	_	ı	7	-	7	6	12
09		_	ı	_	-	_	-	_	-	_	-	9	6	9	6	12	14
50	OCTE	I	I	I	1	I	1		5	I	9	7	11	7	11	13	17
40	Номинальная предельная кратность	I	I	I	I	I	I	4	7	4	7	6	13	6	13	16	20
30	предельн	-	ı	-	4	-	4	9	8	9	6	11	16	11	16	20	24
20	пнальная	1	3	4	9	4	9	8	11	6	12	15	22	15	22	27	30
15	Номи	_	4	9	8	9	8	11	14	11	15	19	26	19	26	32	35
10		3	9	8	12	8	12	14	18	15	20	23	31	23	31	38	41
5		8	11	14	18	14	18	21	24	23	28	32	41	32	41	50	50
3		13	16	20	24	20	24	26	28	30	33	37	47	37	47	99	55
S _{2ном} , ВА	Ответв-	20/2	75/5	100/5	150/5	100/5	150/5	200/5	300/5	200/5	300/5	400/5	9/009	400/5	2/009	750/5	1000/5
Тип гранс-	форма- Ответв-		TB-35-	Π -150/5	1		TB-35-	Π -300/5	1		TB-35-	II-600/5			TB-35-	II- 1000/5	C/0001

Расчетные значения номинальной предельной кратности встроенных транс форматоров тока ТВ-110 Таблица П.9

100		1	I	1	I	I	I	I	I	1	-	11	17	11	17	21	27
75		ı	ı	1	-	-	-	_	11	-	11	15	22	15	22	27	34
09		ı	I	1	_	_	_	_	14	_	14	18	26	18	26	32	40
50	OCTE	ı	1	1	11	1	1	11	16	11	16	21	30	21	30	37	45
40	Номинальная предельная кратность	I	I	I	13	I	1	13	20	13	20	26	36	26	36	44	52
30	пределы	ı	1	13	18	I	13	18	26	18	26	32	44	32	44	53	62
20	инальная	ı	12	20	56	12	20	26	35	56	35	42	99	42	99	89	92
15	Номі	12	17	25	32	17	25	32	42	32	42	20	99	20	99	78	86
10		18	25	35	43	25	35	43	54	43	54	62	78	62	78	92	86
5		34	43	99	63	43	99	63	73	63	73	81	26	81	26	111	113
3		50	09	70	62	09	70	62	98	62	98	92	107	92	107	122	121
$\mathbf{S}_{2HoM},\mathbf{BA}$	Ответв- ление	75/5	100/5	150/5	200/5	100/5	150/5	200/5	300/5	200/5	300/5	400/5	9/009	400/5	9/009	750/5	1000/5
Тип транс-	форма- тора	C L	110.T	-I-011	C/007	T.D	110.1	-I-011	2/000	TD	110 T	-I-011	0000		TB-	110-I-	C/0001

Таблица П.10 Расчетные значения номинальной предельной кратности встроенных транс форматоров тока ТВ-220

	1																
100		I	_	_	14	_	14	91	61	12	19	23	87	10	16	20	<i>L</i> 7
75		1	ı	13	17	13	17	20	22	15	22	26	32	14	21	26	35
09		ı	12	15	20	15	20	22	25	18	25	28	34	17	25	31	42
50	ость	ı	14	17	23	17	23	25	27	21	27	30	36	21	29	36	49
40	Номинальная предельная кратность	11	17	21	26	21	26	28	30	24	30	32	38	25	35	42	28
30	предельн	16	21	26	30	26	30	32	32	28	32	34	40	31	43	52	72
20	пнальная	22	29	33	35	33	35	35	36	34	36	37	43	42	55	99	94
15	Номи	28	35	37	38	37	38	38	37	38	37	38	44	51	65	77	111
10		37	43	44	42	44	42	41	39	43	39	39	45	64	78	92	135
ς.		54	54	52	47	51	47	44	41	49	41	41	47	85	26	113	171
3		64	58	54	48	54	48	44	41	50	41	40	46	96	105	122	190
S _{2HOM} , BA	Ответв-	200/5	300/5	400/5	9/009	400/5	9/009	750/5	1000/5	2/005	1000/5	1500/5	2000/5	400/1	600/1	750/1	1000/1
Тип транс-							1D-	-I-077	C/0001	£	1B-	-I-077	C/0007		TB-	220-I-	1000/1

ЗАКЛЮЧЕНИЕ

В учебном пособии рассмотрены вопросы проектирования релейной защиты понизительных подстанций промышленного предприятия на основе действующих руководящих указаний и методик.

Учебное пособие ориентирует студентов на приобретение знаний в области проектирования релейной защиты объектов энергетики и предназначено как для выполнения курсовой работы по дисциплине «Релейная защита и автоматизация электроэнергетических систем», так и при выполнении соответствующего раздела выпускной квалификационной работы.

Особое внимание в пособии уделено методикам выбора параметров срабатывания защит силовых и цеховых трансформаторов, кабельных линий, двигателей и конденсаторных установок. Приведены методики выбора уставок устройств автоматики. Каждый раздел сопровождается примерами расчета.

Большинство защит, рассмотренных в учебном пособии, выполнены на базе электромеханических реле, т.к. студентами принципа их действия необходимо для закрепления теоретического материала, полученного на лекционных занятиях. Однако, ввиду того, что на вновь проектируемых объектах широкое применение нашли микропроцессорные устройства релейной защиты, в пособии приведены теоретические положения и пример расчета параметров срабатывания дифференциальной защиты трансформатора на базе комплекта SEPAM 1000+.

Приведенные в пособии методики расчета релейной защиты могут быть использованы студентами как при выполнении курсовых и выпускных квалификационных работ, так и в их дальнейшей практической деятельности.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Правила устройства электроустановок [Текст]: Все действующие разделы ПУЭ-6 и ПУЭ-7. 9-й выпуск. Новосибирск: Сиб. унив. изд-во, 2010. 464 с.
- 2. **Андреев, В.А.** Релейная защита и автоматика систем электроснабжения [Текст] : учебник / Андреев В.А. 4-е изд.,перераб.и доп. М. : Высшая школа, 2006. 639 с.
- 3. **Шабад, М.А.** Расчеты релейной защиты и автоматики распределительных сетей [Текст] / М. А. Шабад. 3-е изд.,перераб.и доп. Л. : Энергоатомиздат, 1985. 296 с.
- 4 **Королёв, Е.П.** Расчёты допустимых нагрузок в токовых цепях релейной защиты [Текст] / Е.П. Королёв, Э.М. Либерзон М.: Энергия, 1980. 208 с.
- 5. **Шабад, М.А.** Защита трансформаторов 10 кВ [Текст] : монография / М. А. Шабад. М. : Энергоатомиздат, 1989. 141 с. (Б-ка электромонтера; Вып.623).
- 6. **Корогодский, В.И.** Релейная защита электродвигателей напряжением выше 1 кВ [Текст] / В.И. Корогодский, С.Л. Кужеков, Л.Б. Паперно. М.: Энергоатомиздат, 1987. 247 с.
- 7. **Барзам, А.Б.** Системная автоматика [Текст] / А.Б. Барзам. М.: Энергоатомиздат, 1989. 440 с.
- 8 Справочник по проектированию электроснабжения [Текст] / Под ред. Ю.Г. Барыбина и др. М.: Энергоатомиздат, 1990. 576 с. (Электроустановки промышленных предприятий / Под общ. ред. Ю.Н. Тищенко и др.).
- 9. **Игуменщев, В.А.** Схемы релейной защиты и автоматики понизительной подстанции промышленного предприятия [Текст]: Метод. указания к курсовой работе по дисциплине РЗ и А систем электроснабжения для студентов спец.100400.Магнитогорск / В.А. Игуменщев, Н.Т. Патшин. МГТУ, 2001.
- 10. **Игуменщев В.А.**. Схемы релейной защиты и автоматики на вакуумных выключателях серии BB/TEL [Текст]: Методическая разработка к курсовому и дипломному проектированию по дисциплине «Релейная защита и автоматизация систем электроснабжения» для студентов специальности 140211 и направления 140200 / В.А. Игуменщев, Н.Т. Патшин. Магнитогорск: ГОУ ВПО «МГТУ», 2009. –53с.
- 11. **Патшин, Н.Т.** Схемы релейной защиты и автоматики на элегазовых [Текст]: Методическая разработка к курсовому и дипломному проектированию по дисциплине «Релейная защита и автоматизация систем электроснабжения» для студентов специальности 140211 и направления 140200 / Н.Т. Патшин. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2012. 53с.

- 12. Выпуск №9. Методика расчета уставок дифференциальной защиты трансформаторов (Sepam T87).
- 13. Руководящие указания по релейной защите. Вып. 136. Релейная защита понижающих трансформаторов и автотрансформаторов 110-500 кВ. Расчёты [Текст]. Москва: Энергоатомиздат, 1985.
- 14. Руководящие указания по релейной защите. Вып.12. Токовая защита нулевой последовательности от замыкания на землю линий 110-500 кВ. Расчёты[Текст]. Москва: Энергия, 1980.
- 15. **Засыпкин, А.С.** Релейная защита трансформаторов [Текст] / А.С. Засыпкин. Москва: Энергоатомиздат, 1989. 240 с.